共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Subcellular distribution of newly synthesized virus-specific polypeptides in Moloney murine leukemia virus infected cells. 下载免费PDF全文
G Shanmugam 《Journal of virology》1979,29(1):385-389
Immune precipitation analysis of pulse-labeled proteins present in subcellular fractions of mouse embryo cells infected with Moloney murine leukemia virus showed the presence of anti-gp70 serum-precipitable viral envelope gene products mainly in the microsomal fractions of these cells. In contrast, anti-p30 serum-specific gag (group specific antigen) gene products were found to be distributed in similar amounts in both the microsomal and postmicrosomal supernatant fractions of pulse-labeled cells. 相似文献
3.
Virus-specific polypeptide synthesis was examined in BHK cells and Vero cells infected with Bunyamwera virus. In BHK cells, in addition to the four previously reported virus-coded proteins (L, G1, G2, and N), three other infection-specific proteins were detected. These proteins, of nominal molecular weight 50,000 (p50), 16,000 (p16), and 13,000 (p13), were not labeled in mock-infected cells, were first synthesized between 4 and 8 h after infection, and were relatively prominent among the limited number of proteins generated late in infection. In preparations of purified Bunyamwera virus from BHK cell supernatants, p16 was detected but not p50 or p13. In Vero cells infected with Bunyamwera virus, both p50 and p13 were labeled strongly. Maprik virus, a member of the Mapputta group of arboviruses, is a member of the Bunyavirus genus (S.E. Newton, unpublished data). Maprik virus did not induce the synthesis of p50, p16, or p13; however, two smaller proteins (p17 and p15) which may correspond to p16 and p13 were labeled late in Maprik infection. Our data argue that p16 is a virus-coded component of the Bunyamwera virus particle and that p50 and p13 are virus-coded, nonstructural proteins. 相似文献
4.
R Goorha 《Journal of virology》1981,37(1):496-499
5.
腮腺炎病毒的多肽及其在感染细胞中的合成 总被引:1,自引:0,他引:1
以差异离心和蔗糖密度梯度离心祛提纯了在鸡胚尿囊腔中繁殖的腮腺炎病毒粒子。并用SDS—PAGE分析病毒粒子的结构多肽,发现其结构多肽为11种,分子量在35K到72K之间。同时还检测到HN蛋白的多聚体和F蛋白的大亚基F1。将腮腺炎病毒分别感染Hela,Vero和CE细胞,比较这三种细胞对ME株腮腺炎病毒的敏感性,发现CE细胞是ME株的敏感宿主。用[31S]蛋氨酸标记病毒感染的CE细胞,以SDS-PAGE及放射自显影法检测到腮腺炎病毒在宿主细胞中合成了至少8种多肽,分子量在26.5K到94K之间。对这些多肽在细胞中不同时期合成情况进行了研究。还用脉冲追踪(pulsechase)技术在感染细胞中发现了FO到F这一转译后加工(Postttanslational procession)现象。此外也研究了放线菌素D和高沈度氯化钠对细胞蛋白质合成的抑制作用。 相似文献
6.
The pattern of polypeptides specifically secreted by cells after infection with vaccinia virus has been analyzed. A complex pattern of apparently virus-specified polypeptides exhibiting temporal control of the type seen with intracellular polypeptides after virus infection was observed. Some of the specifically secreted polypeptides were shown to be modified by glycosylation and sulfation. The possible significance of these results is discussed. 相似文献
7.
Gordon SN Dunham RM Engram JC Estes J Wang Z Klatt NR Paiardini M Pandrea IV Apetrei C Sodora DL Lee HY Haase AT Miller MD Kaur A Staprans SI Perelson AS Feinberg MB Silvestri G 《Journal of virology》2008,82(7):3725-3735
Sooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells. To this end, we treated six SIV-infected SMs with potent antiretroviral therapy (ART) and longitudinally measured the decline in plasma viremia. We applied the same mathematical models used in HIV-infected individuals and observed that SMs naturally infected with SIV also present a two-phase decay of viremia following ART, with the bulk (92 to 99%) of virus replication sustained by short-lived cells (average life span, 1.06 days), and only 1 to 8% occurring in longer-lived cells. In addition, we observed that ART had a limited impact on CD4(+) T cells and the prevailing level of T-cell activation and proliferation in SIV-infected SMs. Collectively, these results suggest that in SIV-infected SMs, similar to HIV type 1-infected humans, short-lived activated CD4(+) T cells, rather than macrophages, are the main source of virus production. These findings indicate that a short in vivo life span of infected cells is a common feature of both pathogenic and nonpathogenic primate lentivirus infections and support a model for AIDS pathogenesis whereby the direct killing of infected cells by HIV is not the main determinant of disease progression. 相似文献
8.
G Shanmugam 《Biochemical and biophysical research communications》1977,78(2):517-524
Viral protein synthesis in Moloney murine leukemia virus infected high passage mouse embryo cells was studied utilizing monospecific antisera to the viral core protein p30 and envelope protein gp71. Pulse-chase analysis of [35S]methionine-labeled polypeptides in combination with the demonstration of the presence of either gp71 or p30-specific antigenic determinants in them indicated a 84,000-dalton polypeptide as the precursor of viral glycoproteins and four metabolically unstable polypeptides of approximate molecular weights 88,000, 72,000, 62,000, and 39,000 as the precursors of viral core protein, p30. The p30-containing 88,000 and 72,000-dalton polypeptides were distinctly seen in this system under normal growth conditions. Further, the processing of p30 precursors was very rapid and was complete during a 40 min chase while only partial processing of glycoprotein precursor was observed during the same period. 相似文献
9.
Virus-induced polypeptides in cells infected with varicella-zoster virus (VZV) were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography. When human embryonic lung (HEL) cells infected with the Oka strain of VZV were labelled with 35S-methionine or 14C-glucosamine from 40 hr to 46 hr after infection, at least 18 VZV-induced polypeptides and 10 glycoproteins could be identified in the infected cells. The molecular weights of the polypeptides and glycoproteins ranged from about 145,000 to 23,000, and from about 105,000 to 48,000, respectively. Lysates of VZV-infected cells were treated with specific antisera prepared in green monkeys or guinea-pigs, and analysed by SDS-PAGE and fluorography. In all, 33 polypeptides (with molecular weight of about 145,000 to 22,000) and 13 glycoproteins (molecular weight, about 105,000 to 38,000) were found in the immunoprecipitates. None of these polypeptides and glycoproteins were detected when infected cells cultured in the presence of phosphonoacetic acid (PAA) were treated in the same way. 相似文献
10.
Measles virus polypeptides in infected cells studied by immune precipitation and one-dimensional peptide mapping. 总被引:1,自引:7,他引:1 下载免费PDF全文
M C Graves 《Journal of virology》1981,38(1):224-230
Measles virus does not turn off host cell polypeptide synthesis, making it difficult to precisely identify the polypeptides specified by the virus during the infectious cycle. By using the technique of immune precipitation with measles-specific antisera, the host cell background has been eliminated, and new observations have been made concerning measles virus polypeptides H, P, NP, F, and M. The H polypeptide is first synthesized as a monomer which is processed by further glycosylation and by the formation of disulfide-bonded dimers. Polypeptide P (70,000 daltons) has been found to occur also as a 65,000-dalton molecule, P2, and both forms of the molecule are equally phosphorylated. Polypeptide NP is processed from a cleavage-sensitive form (which undergoes cleavage during the process of isolation to form polypeptide 6 [41,000 daltons]) to a form which is resistant to this cleavage. The fusion and hemolysin polypeptide is first found in the cells as a 55,000-dalton precursor, F0, which is clearly resolved from the NP polypeptide on gel electrophoresis. The measles virus F0 protein identified in previous reports had not been resolved from the 60,000-dalton NP polypeptide. The M protein occurs in the infected cells as two distinct bands, and, as in the case of Sendai virus, one of these two M protein bands represents a phosphorylated form of the other. 相似文献
11.
12.
The patterns of nucleic acid synthesis in insect cells infected with iridescent virus types 2 and 6 has been examined using nucleic acid hybridization techniques. Virus-specific RNA synthesis was detected 24 hr after infection. Virus-specific DNA synthesis was detected 96 hr after infection. Host-specific nucleic acid synthesis declined throughout infection, and host-specific nucleic acid synthesis was detected only in the first 48 hr of infection. The synthesis of iridescent virus progeny DNA molecules precedes the appearance of mature iridescent virus particles. 相似文献
13.
Souichi Nukuzuma Chiyoko Nukuzuma Masanori Kameoka Shigeki Sugiura Kazuo Nakamichi Takafumi Tasaki Tsutomu Takegami 《Microbiology and immunology》2017,61(6):232-238
14.
15.
16.
17.
Viruses are intracellular parasites that use the host cell they infect to produce new infectious progeny. Distinct steps of the virus life cycle occur in association with the cytoskeleton or cytoplasmic membranes, which are often modified during infection. Plus-stranded RNA viruses induce membrane proliferations that support the replication of their genomes. Similarly, cytoplasmic replication of some DNA viruses occurs in association with modified cellular membranes. We describe how viruses modify intracellular membranes, highlight similarities between the structures that are induced by viruses of different families and discuss how these structures could be formed. 相似文献
18.
Experiments were carried out to investigate the nature of the calcium homeostatic mechanisms in neoplastic GH3 rat pituitary cells. GH3 cells grown and maintained in Ham's F10 culture medium contained 35 nmoles calcium/mg cell protein. When stimulated by thyrotropin releasing hormone (TRH) or elevated K+ concentrations, only the latter caused cell calcium levels to rise although both resulted in hormone release. When exposed to EGTA, the GH3 cells lost calcium. When the temperature was lowered to 4 degrees C, the cells gained calcium and when rewarmed were able to extrude the previously accumulated calcium. The increased cell calcium following cold exposure could be blocked by prior treatment with rotenone. If rotenone was added subsequent to the cold exposure, it did not block the extrusion seen upon rewarming. In the absence of glucose in the medium, the GH3 cells took up more calcium upon exposure to 4 degrees C, and upon rewarming the cells could not return to their previous low levels. There are thus significant differences in calcium homeostasis between the neoplastic GH3 cells and their normal pituitary counterparts. When intracellular calcium was localized with the potassium pyroantimonate technique, there was calcium found in/on mitochondria, membrane bound vesicles and plasma membrane. Nuclear staining was sparse, and nucleolar staining was virtually absent. Upon stimulation with TRH, there was a decrease in mitochondrial calcium along with increases in both plasma membrane and nucleolar calcium levels. Since total calcium is unchanged, this indicates a significant calcium redistribution in response to TRH. The increased nucleolar calcium may reflect a calcium dependent increase in mRNA synthesis as has been reported. Since TRH presumably acts at a surface receptor, the increased plasma membrane calcium might be functionally related to receptor activation. 相似文献
19.
In addition to the phosphoprotein, the P gene of measles virus (MV) also encodes the V and C proteins by an RNA editing process and by alternative initiation of translation in a different reading frame, respectively. Although the MV C protein is required for efficient MV replication in vivo and in some cultured cells, its exact functions in virus infection are currently unclear. Here, we report that a recombinant MV lacking the C protein (MVDeltaC) grew poorly in a human cell line possessing the intact interferon (IFN) pathway and that this growth defect was associated with reduced viral translation and genome replication. The translational inhibition was correlated with phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Moreover, increased IFN induction was observed in MVDeltaC-infected cells. The NS1 protein of influenza virus, which binds to double-stranded RNA (dsRNA) and consequently inhibits IFN induction and dsRNA-dependent protein kinase activation, complemented the growth defect of MVDeltaC. These results indicate that the MV C protein inhibits IFN induction and modulates host antiviral responses, thereby ensuring MV growth in host cells. 相似文献