首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wnt signaling regulates cortical and hippocampal development. In a previous study we found that a particular Wnt receptor, Frizzled9 (Fzd9), was selectively expressed in both the developing and adult hippocampus. Taking advantage of the specificity of this promoter, we generated a transgenic cre mouse line using the putative control elements of the Fzd9 gene. In the Fzd9‐cre mice, Cre is mainly detected in the developing cortex and hippocampus and is confined to the CA fields and dentate gyrus in adults. Furthermore, by crossing the Fzd9‐cre mouse with the ROSA26 reporter line, we examined the activity of Cre and found that it has very high recombination efficiency. Thus, this mouse line will likely prove to be a useful tool for studying cortical and hippocampal development via activation or inactivation of interesting genes. genesis 48:343–350, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The hippocampus is crucial for higher brain functions, such as learning, memory, and emotion. Many diseases like epilepsy and Down's syndrome are associated with abnormalities in early hippocampal development. In addition, adult dentate neurogenesis is thought to be defective in several classes of psychiatric disorders. However, the mechanisms regulating hippocampal development and adult neurogenesis remain unclear. One of the limitations to studying these processes is the scarcity of available specific mouse tools. Here, we report an inducible transgenic Cre mouse line, Frizzled 9‐CreER?, in which tamoxifen administration induces Cre recombinant. Our data show that Cre is expressed in the developing hippocampal primordium, confined to the granule cell layer at P20 and further limited to the subgranular zone in the adult dentate gyrus. Cre recombinase shows very high activity in all of these regions. Thus, this transgenic line will be a powerful tool in understanding the mechanisms of hippocampal development, adult neurogenesis, and associated diseases. genesis 49:919–926, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Cajal‐Retzius cells are an enigmatic class of neurons located in the most superficial layer of the cerebral cortex, and they play an important role in cortical development. Although many studies have indicated that CR cells are involved in regulating cell migration and cortical maturation, the function of these cells is still not fully understood. Here we describe an inducible Cre mouse line in which CreER? is driven by the promoter for the Wnt receptor Frizzled10. Consistent with our previous studies on Frizzled10 expression and transgenic mouse lines using the Frizzled10 promoter, we found that in the developing telencephalon, Cre was mainly detected at the cortical hem, the largest source of CR cells. By crossing the Cre line to R26R reporter mice and injecting tamoxifen at different time points, we were able to detect via X‐gal staining CR cells produced from the cortical hem at distinct stages during development. Thus, this transgenic Cre mouse line is a valuable tool for studying the molecular and cellular mechanisms of CR cell development. genesis 47:210–216, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
To establish the genetic tools for conditional gene deletion in mouse retinal progenitors, we generated a Dkk3-Cre transgenic mouse line using bacterial artificial chromosome (BAC) transgenesis. Cre recombination efficiency in vivo was assayed by crossing this transgenic line, termed BAC-Dkk3-Cre, with the CAG-CAT-Z reporter line. This BAC-Dkk3-Cre line showed Cre recombinase activity in most retinal progenitors. Cre activity was detectable from embryonic day 10.5 (E10.5) and generally restricted to the retina during embryogenesis. To verify that BAC-Dkk3-Cre mice successfully circumvented lethality, we generated Otx2flox/flox/BAC-Dkk3-Cre+ mice as Otx2 conditional knockout mice. The Otx2flox/flox/BAC-Dkk3-Cre+ mice were viable, and their retina showed loss of mature cell-type markers of photoreceptor cells, bipolar cells, and horizontal cells, in contrast, amacrine-like cells noticeably increased. Thus, the BAC-Dkk3-Cre transgenic mouse line provides a powerful tool for generating conditional knockout mouse lines for studying loss of gene functions in the developing retina.  相似文献   

5.
Cell type-specific genetic modification using the Cre/loxP system is a powerful tool for genetic analysis of distinct cell lineages. Because of the exquisite specificity of Vasa expression (confined to the germ cell lineage in invertebrate and vertebrate species), we hypothesized that a Vasa promoter-driven transgenic Cre line would prove useful for the germ cell lineage-specific inactivation of genes. Here we describe a transgenic mouse line, Vasa-Cre, where Cre is efficiently and specifically expressed in germ cells. Northern analysis showed that transgene expression was confined to the gonads. Cre-mediated recombination with the Rosa26-lacZ reporter was observed beginning at approximately e15, and was >95% efficient in male and female germ cells by birth. Although there was a potent maternal effect with some animals showing more widespread recombination, there was no ectopic activity in most adults. This Vasa-Cre transgenic line should thus prove useful for genetic analysis of diverse aspects of gametogenesis and as a general deletor line.  相似文献   

6.
We generated transgenic mice bearing a tamoxifen-dependent Cre recombinase expressed under the control of the dopamine-β-hydroxylase promoter. By crossing to the ROSA26 reporter mice we show that tamoxifen-induced Cre recombinase in adult mice specifically activates β-galactosidase expression in differentiated noradrenergic neurons of the central and peripheral nervous system. Tamoxifen application in adult mice did not induce β-galactosidase activity in parasympathetic neurons that transiently express DBH during development. Thus, this transgenic mouse line represents a valuable tool to study gene function in mature noradrenergic neurons by conditional inactivation.  相似文献   

7.
Here, we describe a transgenic mouse line, in which expression of green fluorescent protein fused to Cre recombinase (GFP-Cre) is directed by the early neuronal enhancer (ENE) of Hoxb4. In E9.0-13.5 transgenic embryos, Cre activity coincided with endogenous Hoxb4 throughout the neural tube up to the r6/r7 boundary in the hindbrain, the dorsal root ganglia, and the Xth cranial ganglia. Unexpectedly, Cre activity was also consistently detected in the trigeminal (Vth) cranial nerve, which is devoid of endogenous Hoxb4 expression. Strong GFP dependent fluorescence appeared slightly later in E9.5-E11.5 embryos, and reflected the later expression pattern expected for Hoxb4-ENE directed expression in the neural tube up to the r7/r8 not r6/r7 boundary. Thus, with the exception of the trigeminal nerve, this reporter faithfully reproduces endogenous embryonic neural Hoxb4 expression, and provides an excellent reagent for in vivo gene manipulations in neuronal Hoxb4 positive cells as well as the developing trigeminal nerve. This transgenic mouse line should prove especially useful for determining the fate map of neuronal populations arising in rhombomeres 7 and 8 on its own and in combination with the small set of other existing rhombomere-specific Cre recombinase expressing lines.  相似文献   

8.
Smad7 can be induced by various transforming growth factor‐β superfamily ligands and negatively modulates their signaling, thus acting in a negative, autocrine feedback manner. Previous analyses have demonstrated that although Smad7 is widely expressed, it is predominantly found in the vascular endothelium. Because of the restricted spatiotemporal reporter expression driven via a novel 4.3 kb Smad7 promoter in endocardial cells overlying the hearts atrioventricular (AV) cushions; we hypothesized that a transgenic Cre line would prove useful for the analysis of endocardial cushion and valve formation. Here we describe a mouse line, Smad7Cre, where Cre is robustly expressed within both cardiac outflow and AV endocardial cushions. Additionally, as endocardial cells are thought to contribute at least in part to the formation of the endocardial cushion mesenchyme, we crossed the Smad7Cre mice to the ROSA26eGFP‐DTA diphtheria toxin A‐expressing mice in order to genetically ablate Smad7Cre expressing cells. Ablation of Smad7Cre cells resulted in embryonic lethality by E11.5 and largely acellular endocardial cushions. genesis 47:469–475, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The relationship between germ cells and pluripotent embryonic stem (ES) cells is of particular interest, together with approaches to generate primordial germ cell (PGCs) from ES cells. A critical requirement in these experiments is the ability to unambiguously detect PGCs with the use of, for example, reporter genes. The currently available transgenic reporters do not show exclusive expression in PGCs at their earliest developmental stages. Here we describe the use of germline-restricted expression of stella, which is currently the best marker gene for PGCs. We generated two stella-GFP reporters and show that both transgenes surpass other reporters in terms of timing and specificity of expression in PGCs. Additionally, we demonstrate the usefulness of stella-GFP during the derivation of PGCs from ES cells.  相似文献   

10.
11.
The Clara cell is believed to be the progenitor of the peripheral airway epithelium, and it produces the surfactant proteins SP-A and SP-B, in addition to the 10-kDa Clara cell secretory protein (CCSP or CC10). To date, attempts to develop Clara cell lines have been unsuccessful. Most such attempts have involved the in vitro insertion of a transforming viral oncogene. We have reported previously the characterization of a differentiated conditionally immortalized murine lung Type II epithelial cell line, T7, from the H-2Kb-tsA58 transgenic mouse. We have also used this mouse model to derive Clara cell lines. In this model, the need for in vitro gene insertion is circumvented by the creation of a transgene, in which the large tumor antigen of a temperature-sensitive strain (tsA58) of the simian virus 40 (SV40) is fused with the major histocompatibility complex promoter H-2Kb. The promoter is active in a wide range of tissues and is induced by interferons (IFN). From the lungs of animals harboring the hybrid construct, we isolated and characterized Clara cells. The cells contain dense secretory granules and mitochondria typical of Clara cells, and express SP-A, SP-B, SP-D, and the Clara cell secretory protein, CC10. Withdrawal of the IFN and elevation of the incubation temperature permit normal cell differentiation similar to that of Clara cells in vivo. This cell line should be very useful for the investigation of normal Clara cell function and gene expression.  相似文献   

12.
The use of Cre-loxP technology for the purpose of cell type-specific gene ablation has revolutionized developmental biology and biomedicine. Several transgenic mouse lines have been developed for the analysis of gene function in the gastrointestinal tract, but in all of these the expression of Cre is limited to the epithelial cell layer. No Cre- expressing transgenic mouse lines ("Cre lines") exist for the deletion of loxP-flanked genes specifically in gut mesoderm. To address this deficiency, we have derived a bacterial artificial chromosome based transgenic mouse line in which the Cre gene is controlled by the Foxl1 promoter and enhancer elements. X-Gal staining of Foxl1-Cre; Rosa26R bi-transgenic lines confirm that Foxl1-Cre results in recombination specifically in the gastrointestinal mesenchyme. The Foxl1-Cre line will facilitate the dissection of mesenchymal to epithelial signaling that is known to play a major role in the patterning and function of the gastrointestinal tract.  相似文献   

13.
14.
The ubiquitin-conjugating enzyme (UbcH10) plays important roles in the regulation of cell cycle progression. Recently, UbcH10 expression has been demonstrated in several human and experimental tumors, and proteasome inhibitors have been tested in trials for pulmonary neoplasms; however, the underlying mechanisms as well as the clinicopathological relevance of UbcH10 in the genesis and progression of lung cancer remain largely unknown. Therefore, the authors evaluated the expression of UbcH10 in human lung cancer and evaluated its possible diagnostic and prognostic use. They found that most cases of lung adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma were positive for UbcH10. The expression levels of UbcH10 progressively increased with decreasing degree of tumor differentiation. There was a statistically significant difference of UbcH10 positivity between grade I/III of lung adenocarcinoma (p=0.013) and squamous cell carcinoma (p=0.002). No significant differences were found between histological types (p=0.072). In the case of cell blocks prepared from pleural effusions, inflammatory and reactive mesothelial elements did not show appreciable UbcH10 expression, whereas neoplastic cells exhibited clear UbcH10 positivity. The results suggest that UbcH10 might represent a new and promising diagnostic and prognostic marker in both histologic and cytologic specimens of lung cancer.  相似文献   

15.
Mice with endothelial nitric oxide synthase (eNOS) deletions have defined the crucial role of eNOS in vascular development, homeostasis, and pathology. However, cell specific eNOS function has not been determined, although an important role of eNOS has been suggested in multiple cell types. Here, we have generated a floxed eNOS allele in which exons 9–12, encoding the sites essential to eNOS activity, are flanked with loxP sites. Mice homozygous for the floxed allele showed normal eNOS protein levels and no overt phenotype. Conversely, homozygous mice with Cre‐deleted alleles displayed truncated eNOS protein, lack of vascular NO production, and exhibited similar phenotype to eNOS knockout mice, including hypertension, low heart rate, and focal renal scarring. These findings demonstrate that the floxed allele is normal and it can be converted to a non‐functional eNOS allele through Cre recombination. This mouse will allow time‐ and cell‐specific eNOS deletion. genesis 50:685–692, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The zebrafish is an ideal model for elucidating the cellular and molecular mechanisms that underlie development of the peripheral nervous system. A transgenic line that selectively labels all the sensory circuits would be a valuable tool for such investigations. In this study, we describe such a line: the enhancer trap zebrafish line Tg(SKIV2L2:gfp)j1775 which expresses green fluorescent protein (gfp) in the peripheral sensory ganglia. We show that this transgene marks all peripheral ganglia and sensory nerves, beginning at the time when the neurons are first extending their processes, but does not label the efferent nerves. The trapped reporter is inserted just upstream of a previously poorly described gene: lhfpl4 on LG6. The expression pattern of this gene by in situ hybridization reveals a different, but overlapping, pattern of expression compared to that of the transgene. This pattern also does not mimic that of the gene (skiv2l2), which provided the promoter element in the construct. These findings indicate that reporter expression is not dictated by an endogenous enhancer element, but instead arises through an unknown mechanism. Regardless, this reporter line should prove to be a valuable tool in the investigation of peripheral nervous system formation in the zebrafish.  相似文献   

17.
Several genetically modified mouse models have been generated in order to drive expression of the Cre recombinase in the neuroectoderm. However, none of them specifically targets the posterior neural plate during neurulation. To fill this gap, we have generated a new transgenic mouse line in which Cre expression is controlled by a neural specific enhancer (NSE) from the Caudal‐related homeobox 2 (Cdx2) locus. Analyses of Cre activity via breeding with R26R‐YFP reporter mice have indicated that the Cdx2NSE‐Cre mouse line allows for recombination of LoxP sites in most cells of the posterior neural plate as soon as from the head fold stage. Detailed examination of double‐transgenic embryos has revealed that this novel Cre‐driver line allows targeting the entire posterior neural tube with an anterior limit in the caudal hindbrain. Of note, the Cdx2NSE regulatory sequences direct Cre expression along the whole dorso‐ventral axis (including pre‐migratory neural crest cells) and, accordingly, YFP fluorescence has been also observed in multiple non‐cranial neural crest derivatives of double‐transgenic embryos. Therefore, we believe that the Cdx2NSE‐Cre mouse line represents an important novel genetic tool for the study of early events occurring in the caudal neuroectoderm during the formation of both the central and the peripheral nervous systems. genesis 51:777–784. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The present study explored possible physiological and molecular mechanisms of pontine-wave (P-wave) generator activation-dependent memory processing in the rat using a two-way active-avoidance learning paradigm. The results show that learning training increased rapid eye movement sleep and activated brainstem cells in the P-wave generator. During this period, there was a time-dependent increase in phosphorylation of cAMP response element-binding protein (CREB) in the dorsal hippocampus and amygdala and increased synthesis of activity-regulated cytoskeletal-associated protein (Arc) in the dorsal hippocampus, amygdala, frontal cortex and occipital cortex. Learning training also increased synthesis of brain-derived nerve growth factor (BDNF) in the occipital cortex, amygdala and dorsal hippocampus at different time intervals. During this time, the levels of nerve growth factor did not change. The results also show that the increase in rapid eye movement sleep P-wave density during the post-training 3-h recording session is positively correlated with the increased levels of phosphorylated CREB, BDNF and Arc in the dorsal hippocampus. These results suggest that memory processing of two-way active-avoidance learning may involve excitation of P-wave-generating cells in the brainstem and increased expression of phosphorylated CREB, Arc and BDNF in a time-dependent manner in the forebrain. These dynamic changes in cellular and molecular features provide considerable insight into the mechanisms of the P-wave generator activation-dependent memory consolidation process.  相似文献   

19.
Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR‐expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR‐CreER knock‐in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)‐inducible Cre recombinase. We show that the MOR‐CreER allele undergoes Tm‐dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR‐CreER mouse line combined with a Cre‐dependent adeno‐associated virus vector enables robust gene manipulation in the MOR‐enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre‐mediated recombination. Thus, the MOR‐CreER mouse is a powerful tool to study MOR‐expressing cells with conditional gene manipulation in developing and mature neural tissues.  相似文献   

20.
Smad5 is a member of the Smad family of intracellular mediators of BMP signals and in endothelial cells of TGF-beta signals. We and others previously showed that loss of Smad5 in the mouse results in embryonic lethality (between E9.5-E11.5) due to multiple embryonic and extraembryonic defects. To circumvent the early embryonic lethality and to allow tissue- and time-specific Smad5 inactivation, we created a conditional Smad5 allele in the mouse. Floxed Smad5 (Smad5(flE2,Neo/flE2,Neo)) mice were generated in which both exon2 and the Neo-cassette were flanked by loxP sites. Here we demonstrate that embryos with ubiquitous Cre-mediated deletion of Smad5 (Smad5(flDeltaE2/flDeltaE2)) phenocopy the conventional Smad5 knockout mice. Smad5(flE2/flE2) mice are now available and will be a valuable tool to analyze the role of Smad5 beyond its crucial early embryonic function throughout development and postnatal life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号