首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In zebrafish acerebellar (ace) embryos, because of a point mutation in fgf8, the isthmic constriction containing the midbrain-hindbrain boundary (MHB) organizer fails to form. The mutants lack cerebellar development by morphological criteria, and they appear to have an enlarged tectum, showing no obvious reduction in the tissue mass at the dorsal mesencephalic/metencephalic alar plate. To reveal the molecular identity of the tissues located at equivalent rostrocaudal positions along the neuraxis as the isthmic and cerebellar primordia in wild-types, we undertook a detailed analysis of ace embryos. In ace mutants, the appearance of forebrain and midbrain specific marker genes (otx2, dmbx1, wnt4) in the caudal tectal enlargement reveals a marked rostralized gene expression profile during early somitogenesis, followed by the lack of early and late cerebellar-specific gene expression (zath1/atoh1, gap43, tag1/cntn2, neurod, zebrin II). The Locus coeruleus (LC) derived from rostral rhombomere 1 is also absent in the mutants. A new interface between otx2 and epha4a suggests that the rostralization stops at the caudal part of rhombomere 1. The mesencephalic basal plate is also affected in the mutant embryos, as indicated by the caudal expansion of the diencephalic expression domains of epha4a, zash1b/ashb, gap43 and tag1/cntn2, and by the dramatic reduction of twhh expression. No marked differences are seen in cell proliferation and apoptotic patterns around the time the rostralization of gene expression becomes evident in the mutants. Therefore, locally distinct cell proliferation and cell death is unlikely to be the cause of the fate alteration of the isthmic and cerebellar primordia in the mutants. Dil cell-lineage labeling of isthmic primordial cells reveals that cells, at the location equivalent of the wild-type MHB, give rise to caudal tectum in ace embryos. This suggests that a caudalto-rostral transformation leads to the tectal expansion in the mutants. Fgf8-coated beads are able to rescue morphological MHB formation, and elicit the normal molecular identity of the isthmic and cerebellar primordium in ace embryos. Taken together, our analysis reveals that cells of the isthmic and cerebellar primordia acquire a more rostral, tectal identity in the absence of the functional MHB organizer signal Fgf8.  相似文献   

2.
3.
The cerebellar structures of teleosts are markedly different from those of other vertebrates. The cerebellum continues rostrally into the midbrain ventricle, forming the valvula cerebelli, only in ray-finned fishes among vertebrates. To analyze the ontogenetic processes that underlie this morphological difference, we examined the early development of the cerebellar regions, including the isthmus (mid/hindbrain boundary, MHB), of the medaka (Oryzias latipes), by histology and in-situ hybridization using two gene (wnt1 and fgf8) probes. Isthmic wnt1 was expressed stably in the caudalmost mesencephalic region in the neural tube at all developmental stages examined, defining molecularly the caudal limit of the mesencephalon. The wnt1-positive mesencephalic cells became located rostrally to the isthmic constriction at Iwamatsu's stages 25-26. Isthmic fgf8 expression changed dynamically and became restricted to the rostralmost metencephalic region at stage 24. The rostralmost part (prospective valvula cerebelli) of the fgf8-positive rostral metencephalon protruded rostrally into the midbrain ventricle, bypassing the isthmic constriction, at stages 25-26. Thus, the isthmic constriction shifted caudally with respect to the molecularly defined MHB at stages 25-26. Paired cerebellar primordia were formed from the alar plates of the fgf8-positive rostral metencephalon and the fgf8-negative caudal metencephalon in the medaka neural tube. Our results show that cerebellar development differs between teleosts and murines: both the rostral and caudal metencephalic alar plates develop into the cerebellum in medaka, whereas in the murines only the caudal metencephalic alar plate develops into the cerebellum, and the rostral plate is reduced to a thin membrane.  相似文献   

4.
The organizer at the midbrain-hindbrain boundary (MHB organizer) has been proposed to induce and polarize the midbrain during development. We investigate the requirement for the MHB organizer in acerebellar mutants, which lack a MHB and cerebellum, but retain a tectum, and are mutant for fgf8, a candidate inducer and polarizer. We examine the retinotectal projection in the mutants to assay polarity in the tectum. In mutant tecta, retinal ganglion cell (RGC) axons form overlapping termination fields, especially in the ventral tectum, and along both the anterior-posterior and dorsal-ventral axis of the tectum, consistent with a MHB requirement in generating midbrain polarity. However, polarity is not completely lost in the mutant tecta, in spite of the absence of the MHB. Moreover, graded expression of the ephrin family ligand Ephrin-A5b is eliminated, whereas Ephrin-A2 and Ephrin-A5a expression is leveled in acerebellar mutant tecta, showing that ephrins are differentially affected by the absence of the MHB. Some RGC axons overshoot beyond the mutant tectum, suggesting that the MHB also serves a barrier function for axonal growth. By transplanting whole eye primordia, we show that mapping defects and overshooting largely, but not exclusively, depend on tectal, but not retinal genotype, and thus demonstrate an independent function for Fgf8 in retinal development. The MHB organizer, possibly via Fgf8 itself, is thus required for midbrain polarisation and for restricting axonal growth, but other cell populations may also influence midbrain polarity.  相似文献   

5.
6.
The isthmic nucleus (IN) is a visual relay centre of the frog brain. It receives afferent projection from the optic tectum of the same side and projects bilaterally to both tecta. In young postmetamorphic Xenopus frogs, the survival of neurones in the IN on both sides was studied following the complete removal of the right tectum. In 6- to 8-week-old frogs, the right tectum was surgically removed and the operated animals allowed to survive for 1 to 13 weeks after operation. In selected animals, 3 days before the intended sacrifice, the postoptic commissure was transected and the cut isthmotectal fibres filled with horseradish peroxidase (HRP). In serial paraffin sections of the midbrain, the numbers of surviving and dying (pyknotic) neurones in the left and right IN were counted. The soma size of viable isthmic neurones and the volume of both IN were measured. Pyknotic neurones were seen between 1 and 6 weeks after operation in both the left and right IN, although the rate of cell loss was much greater in the latter. Virtually all the neurones of the right IN degenerated by 6 weeks after tectal ablation. In contrast, approximately 60% of neurones of the left IN survived. HRP histochemistry showed labelled isthmic neurones both in the left and right IN up to 3 weeks after operation. Thereafter, HRP-labelled neurones appeared only in the left IN. These observations indicate that the removal of the natural target of isthmic neurones brings about severe neurone death.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary Tongue-projecting plethodontid salamanders have massive direct ipsilateral retinal afferents to the tectum opticum as well as a large and well developed nucleus isthmi. Retrograde staining revealed two subnuclei: A ventral one projecting to the contralateral tectal hemisphere and a dorsal one projecting back to the ipsilateral side. The isthmic nuclei show a retinotopic organization, which is in register with that of the tectum. Electrophysiological recordings from nucleus-isthmi neurons revealed response properties that are very similar to those found in tectal neurons. Thus, there is no substantial processing of tectal neural activity in the nucleus isthmi. Measurements of peak latencies after electrical and light stimulation suggest the continuous coexistence of 4 representations of the visual field in the tectum mediated by (1) the contralateral and (2) the ipsilateral direct retinal afferents, (3) the uncrossed and (4) the crossed isthmo-tectal projection. (1) and (2) originate at the same moment in the retina and arrive simultaneously in the tectum. It is assumed that in plethodontid salamanders with massive ipsilateral retino-tectal projections depth perception based on disparity cues is achieved by comparison of these images.Representations mediated by (3) and (4) arriving in the tectum at the same time as (1) and (2) originate 10–30 ms earlier in the retina. It is hypothesized that these time differences between (1)/(2) and (3)/(4) are used to calculate three-dimensional trajectories of fast-moving prey objects.Abbreviations EL edge length - FDA fluoresceine dextranamine - RDA tetramethylrhodamine dextranamine - RF receptive field  相似文献   

8.
Astrocytes have been considered to be transformed from radial glial cells that appear at early stage of development and play a scaffold-role for neuronal cell migration. Recent studies indicate that neuroepithelial cells in the spinal cord also give rise to astrocytes. However, the mode of astroglial generation and migration in the ventricular neuroepithelium remains poorly understood. In this study, we have utilized immunohistochemical and retroviral lineage tracing methods to characterize the developmental profiles of astrocytes in the chick optic tectum, which develops from both the neural tube and invasion of optic tract. Chick vimentin and glial fibrillary acidic protein (GFAP) were found as single bands at molecular weights consistent with those reported for mammalian species. Differential developmental trends were observed for both proteins with relative vimentin levels decreasing and GFAP levels increasing with embryonic age. We observed two streams of tectal GFAP-labeled astrocytes originated from the tectal ventricle (intrinsic origin) and the optic tract (extrinsic origin). The extrinsic astrocytes arose from the ventral neuroepithelium of the third ventricle, dispersed bilaterally to the optic tract, and subsequently to the outer layer of optic tectum, indicating migration of astrocytes along retinal ganglion cell axons. On the other hand, the intrinsic astrocytes from the tectal ventricular neuroepithelium appeared first in the ventral part of the optic tectum, and then in the lateral and dorsal tectum. The intrinsic tectal astrocytes closely associated with fascicles of vimentin-labeled radial glial cells, indicating a presumptive radial migration of astrocytes. These results demonstrated that the optic tectum contains heterogeneous populations of astrocytes developed from the different origins and routes of migration.  相似文献   

9.
The in vivo accessibility of the chick embryo makes it a favoured model system for experimental developmental biology. Although the range of available techniques now extends to miss-expression of genes through in ovo electroporation, it remains difficult to knock out individual gene expression. Recently, the possibility of silencing gene expression by RNAi in chick embryos has been reported. However, published studies show only discrete quantitative differences in the expression of the endogenous targeted genes and unclear morphological alterations. To elucidate whether the tools currently available are adequate to silence gene expression sufficiently to produce a clear and specific null-like mutant phenotype, we have performed several experiments with different molecules that trigger RNAi: dsRNA, siRNA, and shRNA produced from a plasmid coexpressing green fluorescent protein as an internal marker. Focussing on fgf8 expression in the developing isthmus, we show that no morphological defects are observed, and that fgf8 expression is neither silenced in embryos microinjected with dsRNA nor in embryos microinjected and electroporated with a pool of siRNAs. Moreover, fgf8 expression was not significantly silenced in most isthmic cells transformed with a plasmid producing engineered shRNAs to fgf8. We also show that siRNA molecules do not spread significantly from cell to cell as reported for invertebrates, suggesting the existence of molecular differences between different model systems that may explain the different responses to RNAi. Although our results are basically in agreement with previously reported studies, we suggest, in contrast to them, that with currently available tools and techniques the number of cells in which fgf8 gene expression is decreased, if any, is not sufficient to generate a detectable mutant phenotype, thus making RNAi useless as a routine method for functional gene analysis in chick embryos.  相似文献   

10.
Members of the Eph-B family of receptors tyrosine kinase and their transmembrane ligands have been implicated in dorsoventral patterning of the vertebrate retinotectal projection. In the zebrafish retinotectal system, however, ephrinB2a is expressed strongly in the posterior tectum, in tectal neurons that form physical contacts with retinal ganglion cell (RGC) axons. In the gnarled mutant, where tectal neurons form ectopically in the pretectum, RGC axons stall before entering the tectum, or else are misrouted or branch aberrantly in the tectal neuropil. Ectopic expression of ephrinB2a in the anterior midbrain of wild-type embryos, with the aid of baculovirus, also inhibits RGC axon entry into the tectum. In vitro, zebrafish RGC axons are repelled by stripes of purified ephrinB2a. It is proposed that ephrinB2a may signal a subpopulation of RGC axons that they have reached their target neurons in the tectum.  相似文献   

11.
The morphology of neurons in the isthmic nucleus was studied with the Golgi technique. Most of the neurons have thick dendrites covered with lamelliform dendritic processes. The tecto-isthmic projection was investigated with the Fink--Heimer technique after partial tectal lesions. The anteromedial part of the tectum projects on the dorsal and anterior part, the caudomedial tectal region on the dorsal and posterior part of the nucleus. The posterolateral tectal area projects on the anterolateral part of the nucleus, and the axons originating in the anterolateral tectal quadrant terminate in its ventral and caudal part.  相似文献   

12.
13.
Pluripotentiality of the 2-day-old avian germinative neuroepithelium   总被引:2,自引:0,他引:2  
In a previous study using chick/quail chimeric embryos with homotopic transplants (Martinez & Alvarado-Mallart, 1989b), we have delimited in the 2-day-old avian embryo the areas of the neural tube giving rise to optic tectum and mesencephalic grissea as well as to isthmic grissea and cerebellum: respectively, "mesencephalic" and "metencephalic" alar plates. To investigate the determination or the competence of these areas, portions of these germinative neuroepithelia from a quail embryo were transplanted in substitution for other areas of the chick neural tube. The analysis of the chimeric brains was done by comparing alternating transverse sections stained for cytoarchitecture and with two different techniques to recognize transplanted versus host cells: either the Feulgen and Rossenbeck DNA histochemical reaction and/or immunohistochemical methods with a monoclonal antibody recognizing quail but not chick cells. The eventual visual innervation of the quail graft was analyzed in many cases by injecting anterograde axonal tracers in the eye contralateral to the graft. The results are as follows: (1) caudal metencephalon transferred to mesencephalon maintained in all cases its presumptive cerebellar phenotype, whereas (2) rostral metencephalon transferred to mesencephalon changed its fate to a tectal phenotype but maintained its cerebellar fate when transferred to diencephalon; (3) caudal mesencephalon maintained its tectal fate in 65% of the cases when transferred to diencephalon, whereas (4) rostral mesencephalon transferred to a cerebellar domain changed its fate and became influenced by the surrounding structures in all cases, but only in 85% of the cases when it was transplanted to diencephalon; (5) the in situ host diencephalon, isolated from its normal environment by a mesencephalic graft, is competent to change its fate and express a mesencephalic phenotype. These results demonstrate that at least some regions of the germinative neuroepithelium from either metencephalon, mesencephalon, and diencephalon are still pluripotent in the 2-day-old avian embryo and that their fate seems to be under the influence of the surrounding structures. Rostral mesencephalon and rostral metencephalon have been more easily influenced by environmental factors than their caudal counterparts, suggesting that regions providing instructive positional factors exist within the 2-day-old germinative neuroepithelium. These regions might play an important role in the determination of the various segments of the neural tube.  相似文献   

14.

Background

Studies of symmetric structures have made important contributions to evolutionary biology, for example, by using fluctuating asymmetry as a measure of developmental instability or for investigating the mechanisms of morphological integration. Most analyses of symmetry and asymmetry have focused on organisms or parts with bilateral symmetry. This is not the only type of symmetry in biological shapes, however, because a multitude of other types of symmetry exists in plants and animals. For instance, some organisms have two axes of reflection symmetry (biradial symmetry; e.g. many algae, corals and flowers) or rotational symmetry (e.g. sea urchins and many flowers). So far, there is no general method for the shape analysis of these types of symmetry.

Results

We generalize the morphometric methods currently used for the shape analysis of bilaterally symmetric objects so that they can be used for analyzing any type of symmetry. Our framework uses a mathematical definition of symmetry based on the theory of symmetry groups. This approach can be used to divide shape variation into a component of symmetric variation among individuals and one or more components of asymmetry. We illustrate this approach with data from a colonial coral that has ambiguous symmetry and thus can be analyzed in multiple ways. Our results demonstrate that asymmetric variation predominates in this dataset and that its amount depends on the type of symmetry considered in the analysis.

Conclusions

The framework for analyzing symmetry and asymmetry is suitable for studying structures with any type of symmetry in two or three dimensions. Studies of complex symmetries are promising for many contexts in evolutionary biology, such as fluctuating asymmetry, because these structures can potentially provide more information than structures with bilateral symmetry.  相似文献   

15.
Medakafish as a model system for vertebrate developmental genetics   总被引:9,自引:0,他引:9  
Several teleosts, such as the zebrafish and the medakafish or medaka (Oryzias latipes), are used as vertebrate model systems in various fields of biology. The medaka is suitable for use in genomic studies because of its small genome size. Moreover, our recent results of small-scale mutagenesis in the medaka indicate that it is possible to identify mutations, the phenotypes of which could not be found in zebrafish mutants obtained by large-scale mutagenesis. An example is Oot (One-sided optic tectum), a maternal-effect mutation. In the Oot phenotype, bilateral symmetry is broken in the optic tectum in the early developmental stages, and either the left or right morphology is duplicated on both sides. Medaka inbred strains can be produced and used to study quantitative traits in vertebrate development. Data presented support the use of medaka as another important fish model for the study of vertebrate developmental genetics.  相似文献   

16.
The vertebrate brain develops from a bilaterally symmetric neural tube but later displays profound anatomical and functional asymmetries. Despite considerable progress in deciphering mechanisms of visceral organ laterality, the genetic pathways regulating brain asymmetries are unknown. In zebrafish, genes implicated in laterality of the viscera (cyclops/nodal, antivin/lefty and pitx2) are coexpressed on the left side of the embryonic dorsal diencephalon, within a region corresponding to the presumptive epiphysis or pineal organ. Asymmetric gene expression in the brain requires an intact midline and Nodal-related factors. RNA-mediated rescue of mutants defective in Nodal signaling corrects tissue patterning at gastrulation, but fails to restore left-sided gene expression in the diencephalon. Such embryos develop into viable adults with seemingly normal brain morphology. However, the pineal organ, which typically emanates at a left-to-medial site from the dorsal diencephalic roof, becomes displaced in position. Thus, a conserved signaling pathway regulating visceral laterality also underlies an anatomical asymmetry of the zebrafish forebrain.  相似文献   

17.
Laterality is fundamental to the vertebrate body plan. Here, we investigate the roles of fgf8 signaling in LR patterning of the zebrafish embryo. We find that fgf8 is required for proper asymmetric development of the brain, heart and gut. When fgf8 is absent, nodal signaling is randomized in the lateral plate mesoderm, leading to aberrant LR orientation of the brain and visceral organs. We also show that fgf8 is necessary for proper symmetric development of the pharyngeal skeleton. Attenuated fgf8 signaling results in consistently biased LR asymmetric development of the pharyngeal arches and craniofacial skeleton. Approximately 1/3 of zebrafish ace/fgf8 mutants are missing Kupffer's vesicle (KV), a ciliated structure similar to Hensen's node. We correlate fgf8 deficient laterality defects in the brain and viscera with the absence of KV, supporting a role for KV in proper LR patterning of these structures. Strikingly, we also correlate asymmetric craniofacial development in ace/fgf8 mutants with the presence of KV, suggesting roles for KV in lateralization of the pharyngeal skeleton when fgf8 is absent. These data provide new insights into vertebrate laterality and offer the zebrafish ace/fgf8 mutant as a novel molecular tool to investigate tissue-specific molecular laterality mechanisms.  相似文献   

18.
19.
20.
The isthmus is the organizing center for the tectum and cerebellum. Fgf8 and Wnt1 are secreted molecules expressed around the isthmus. The function of Fgf8 has been well analyzed, and now accepted as the most important organizing signal. Involvement of Wnt1 in the isthmic organizing activity was suggested by analysis of Wnt1 knockout mice. But its role in isthmic organizing activity is still obscure. Recently, it has been shown that Lmx1b is expressed in the isthmic region and that it may occupy higher hierarchical position in the gene expression cascade in the isthmus. We have carried out misexpression experiment of Lmx1b and Wnt1, and considered their role in the isthmic organizing activity. Lmx1b or Wnt1 misexpression caused expansion of the tectum and cerebellum. Fgf8 was repressed in a cells that misexpress Lmx1b, but Fgf8 expression was induced around Lmx1b-misexpressing cells. As Lmx1b induced Wnt1 and Wnt1 induced Fgf8 expression in turn, Wnt1 may be involved in non cell-autonomous induction of Fgf8 expression by Lmx1b. Wnt1 could not induce Lmx1b expression so that Lmx1b may be put at the higher hierarchical position than Wnt1 in gene expression cascade in the isthmus. We have examined the relationship among isthmus related genes, and discuss the mechanism of the formation and maintenance of isthmic organizing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号