首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: The study was aimed to investigate the potential therapeutic effect of Mori folium aqueous extracts (MFAE) on type 2 diabetes mellitus (T2DM) in vivo.Methods and results: A rat model of T2DM was established with the combination of high sugar and high-fat diet (HSFD) and streptozotocin (STZ). The T2DM rats were administrated with low (2 g.kg−1) and high (5 g.kg−1) doses of MFAE for 60 consecutive days. The biochemical indices of glucose metabolism disorders, insulin resistance and oxidative stress were observed. The results indicated that MFAE significantly promoted the synthesis of hepatic glycogen, reduced the levels of fasting blood glucose and fasting blood insulin, and improved the insulin sensitivity index (ISI). MFAE administration also remarkably increased the levels of superoxide dismutase (SOD) and reduced the levels of malondialdehyde (MDA).Conclusion: MFAE showed a therapeutic effect on T2DM with the bioative effect of improve glucose metabolism disorders, decrease insulin resistance, and ameliorate the antioxidative ability.  相似文献   

2.
The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r =  0.56, p < 0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF–TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM.  相似文献   

3.
目的构建2型糖尿病(T2DM)恒河猴模型,使之成为研究人类T2DM的有效替身。方法以高糖高脂饮食为基础,在出现高脂血症和肥胖状态后注射35mg/kg的链脲佐菌素(STZ),测定体重指数、血脂、空腹血糖、胰岛素、胰岛素抵抗指数、尿糖和口服葡萄糖耐量试验等,分析其部分临床特征。结果T2DM模型组体重指数(BMI)大于35达到重度肥胖,有高脂血症的特点,空腹血糖、胰岛素和胰岛素抵抗指数显著增高(P〈0.01),尿糖检测呈阳性,葡萄糖耐量受损并且空腹血糖高于7mmol/L、2h的血糖水平高于11.Immol/L,胰岛有轻度损伤和病变。结论通过部分临床特征分析,T2DM模型组具有典型的T2DM临床特征,可成为T2DM研究的有效模型。  相似文献   

4.
Feline diabetes mellitus (FDM) closely resembles human type 2 diabetes mellitus (T2DM) in many respects including clinical, physiological, and pathological features of the disease. These features include age of onset of FDM in middle age, association with obesity, residual but declining insulin secretion, development of islet amyloid deposits, loss of approximately 50% of beta-cell mass, and development of complications in several organ systems including peripheral polyneuropathy and retinopathy. Many of the pathological aspects of the disease are also experimentally inducible, facilitating study of the pathogenesis of these lesions. Physiological aspects of FDM and obesity are also well studied in the cat and provide an excellent basis for comparative studies of human T2DM. The relatively short generation time of cats along with breed predispositions to development of FDM may allow for more rapid screening and identification of genetic markers for diabetes susceptibility. FDM, in both spontaneous and inducible forms, therefore provides a good animal model of human T2DM and may provide additional insights into the pathogenesis of this important condition.  相似文献   

5.
In 2004, the human islet amyloid polypeptide (HIP) rat model was created by transfecting the Sprague-Dawley rat with the human islet amyloid polypeptide (hIAPP)-amylin gene. The objective of this study is to utilize the transmission electron microscope to study the longitudinal cellular and extracellular morphological changes within the islets of this model at 4, 8, and 14 months of age. It has been previously demonstrated that the 2-, 5-, and 10-month HIP models have no diabetes, impaired fasting glucose, and diabetes, respectively. The 4-month HIP model (FBS 123 mg/dl) demonstrated an abundance of beta-cells and insulin secretory granules with significant pericapillary and inter-beta-cell islet amyloid deposition. The 8-month model (FBS 187 mg/dl) demonstrated extensive islet amyloid deposition and marked changes of beta-cell apoptosis. The 14-month-old model (FBS 244 mg/dl) demonstrated islet and beta-cell atrophy with even greater amounts of extracellular islet amyloid compared to the 4-month-old and 8-month-old models. Functional beta cells were sparse and were associated with intra islet adipose deposition. These findings of ultrastructure cellular and extracellular morphological longitudinal remodeling changes in this novel animal model of type 2 diabetes may provide investigators with a better understanding regarding the role of islet amyloid in human islet.  相似文献   

6.
Type 2 diabetes mellitus (T2DM) is complex metabolic disease that arises as a consequence of interactions between genetic predisposition and environmental triggers. One recently described environmental trigger associated with development of T2DM is disturbance of circadian rhythms due to shift work, sleep loss, or nocturnal lifestyle. However, the underlying mechanisms behind this association are largely unknown. To address this, the authors examined the metabolic and physiological consequences of experimentally controlled circadian rhythm disruption in wild-type (WT) Sprague Dawley and diabetes-prone human islet amyloid polypeptide transgenic (HIP) rats: a validated model of T2DM. WT and HIP rats at 3 months of age were exposed to 10 weeks of either a normal light regimen (LD: 12:12-h light/dark) or experimental disruption in the light-dark cycle produced by either (1) 6-h advance of the light cycle every 3 days or (2) constant light protocol. Subsequently, blood glucose control, beta-cell function, beta-cell mass, turnover, and insulin sensitivity were examined. In WT rats, 10 weeks of experimental disruption of circadian rhythms failed to significantly alter fasting blood glucose levels, glucose-stimulated insulin secretion, beta-cell mass/turnover, or insulin sensitivity. In contrast, experimental disruption of circadian rhythms in diabetes-prone HIP rats led to accelerated development of diabetes. The mechanism subserving early-onset diabetes was due to accelerated loss of beta-cell function and loss of beta-cell mass attributed to increases in beta-cell apoptosis. Disruption of circadian rhythms may increase the risk of T2DM by accelerating the loss of beta-cell function and mass characteristic in T2DM.  相似文献   

7.
目的:用体重检测、空腹血糖检测、宏观表征、旷场实验行为学评价糖尿病兼抑郁症的大鼠模型。方法采用高脂饲料喂养加腹腔注射小剂量链脲佐菌素( STZ)的方法制备2型糖尿病模型,在其基础上再用21 d慢性束缚的方法建立糖尿病兼抑郁症大鼠模型。将32只Wistar大鼠随机分为3组( n =8):正常组(N组),2型糖尿病组(T组),2型糖尿病兼抑郁症组(T+D组)。2型糖尿病模型建立后,在慢性束缚的第0、7、14、21天检测大鼠的空腹血糖和体重,并对大鼠的宏观表征、饮食量、粪便、小便、精神状态进行观察,在第21天利用行为学设备分析软件,对大鼠旷场实验进行分析,检测大鼠的抑郁程度,验证评价2型糖尿病兼抑郁症大鼠模型是否成功。结果给予高脂饲料及腹腔注射STZ制备2型糖尿病模型后,T+D组大鼠的毛发散乱,无光泽,活动迟缓,进食量、饮水量增加,粪便尿量增加,精神萎靡。第0、7、14、21天T组和T+D组组大鼠体重均下降,与N组比较差异有显著性(P<0.05;P<0.01),21d慢性束缚刺激后,T+D组体重比T组大鼠体重增加较慢,差异有显著性(P<0.05);第0、7、14、21天,T组和T+D组大鼠血糖均升高,与N组比较差异有显著性( P<0.01),21 d慢性束缚刺激后,第21天T+D组大鼠血糖比T组较高,差异有显著性(P<0.01),大鼠5 min内总移动距离有变化,与N组相比,T组差异没有显著性(P>0.05),T+D组差异有显著性(P<0.05);与N组相比,T组大鼠5 min内移动速度减慢,差异有显著性(P<0.05),T+D组差异有显著性( P<0.01)。结论利用高脂饲料喂养加腹腔注射小剂量STZ及21天慢性束缚的方法,可以成功复制2型糖尿病兼抑郁症大鼠模型,适用于后续研究。  相似文献   

8.
Thiazolidinediones (TZDs) improve glycemic control and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). There is growing evidence from in vivo and in vitro studies that TZDs improve pancreatic beta-cell function. The aim of this study was to determine whether TZD-induced improvement in glycemic control is associated with improved beta-cell function. We studied 11 normal glucose-tolerant and 53 T2DM subjects [age 53+/-2 yr; BMI 29.4+/-0.8 kg/m2; fasting plasma glucose (FPG) 10.3+/-0.4 mM; Hb A1c 8.2+/-0.3%]. Diabetic patients were randomized to receive placebo or TZD for 4 mo. Subjects received 1) 2-h OGTT with determination of plasma glucose, insulin, and C-peptide concentrations and 2) two-step euglycemic insulin (40 and 160 mU.m-2.min-1) clamp with [3-(3)H]glucose. T2DM patients were then randomized to receive 4 mo of treatment with pioglitazone (45 mg/day), rosiglitazone (8 mg/day), or placebo. Pioglitazone and rosiglitazone similarly improved FPG, mean plasma glucose during OGTT, Hb A1c, and insulin-mediated total body glucose disposal (Rd) and decreased mean plasma FFA during OGTT (all P<0.01, ANOVA). The insulin secretion/insulin resistance (disposition) index [DeltaISR(AUC)/Deltaglucose(AUC)/IR] was significantly improved in all TZD-treated groups: +1.8+/-0.7 (PIO+drug-na?ve diabetics), +0.7+/-0.3 (PIO+sulfonylurea-treated diabetics), and 0.7+/-0.2 (ROSI+sulfonylurea-withdrawn diabetics) vs. -0.2+/-0.3 in the two placebo groups (P<0.01, all TZDs vs. placebo, ANOVA). Improved insulin secretion correlated positively with increased body weight, fat mass, and Rd and inversely with decreased plasma glucose and FFA during the OGTT. In T2DM patients, TZD treatment leads to improved beta-cell function, which correlates strongly with improved glycemic control.  相似文献   

9.
目的:观察葛根素对2型糖尿病(T2DM)大鼠的治疗作用。方法:采用高糖高脂饲料喂养加一次性腹腔注射60 mg/kg链脲佐菌素的方法建立T2DM 大鼠模型,随机分为正常组,模型组,二甲双胍(40 mg/kg)组,葛根素低、中、高剂量(40,80,160 mg/kg)组,每组10只大鼠;造模成功后,灌胃给药4周,每周测量大鼠体重和空腹血糖(FBG),末次给药24 h后取血,收集血清,检测各组大鼠的血糖、血清甘油三酯(TG)、总胆固醇(TC) 、低密度脂蛋白-胆固醇(LDL-C)水平、高密度脂蛋白-胆固醇(HDL-C),血清天门冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)活性,血清尿素氮(BUN)、肌酐(SCr)、尿酸(UA)水平。结果:干预4周后,与正常组比较,模型组大鼠体重显著降低(P<0.01),FBG,TC,TG,LDL-C,ALT,AST,BUN,SCr,UA均显著升高(P<0.01),而HDL-C 显著降低(P<0.01);与模型组比较,二甲双胍组和葛根素各剂量组大鼠体重均显著增加(P<0.01),FBG,TC,TG,LDL-C,ALT,AST,BUN,SCr,UA均显著降低(P<0.01),而HDL-C显著升高(P<0.01)。结论:葛根素能够减少T2DM大鼠体重降低幅度,降低血脂、血糖水平,可用于T2DM的治疗。  相似文献   

10.
The objective of this study was to investigate the modulation of metabolic dysfunctions, adiponectin levels, and cardiac dysfunctions of type 2 diabetes mellitus (T2DM) by a combination of the insulin sensitizer rosiglitazone and angiotensin receptor blocker telmisartan in an experimental rat model. Fifty male adult Sprague-Dawley rats were divided equally into 5 groups. Group I: fed normal chow; served as normal control group. Groups II-V: fed a high-fat diet (HFD) for 2 weeks, followed by injection of streptozotocin (STZ; 35 mg/kg) to create a model of T2DM. Group II: treated with vehicle. Group III: treated with rosiglitazone (4 mg/kg). Group IV: treated with telmisartan (5 mg/kg). Group V: treated with both agents. Untreated HFD-STZ rats showed elevated fasting blood glucose, insulin, homeostasis model assessment (HOMA) index, triglycerides (TGs), low-density lipoprotein cholesterol (LDL), and total serum cholesterol (TC), with a decrease in high-density lipoprotein cholesterol (HDL) and adiponectin levels (p < 0.001). Rosiglitazone exerted more improvement in all parameters than telmisartan did, and a combination of both did not augment the improvement further, except for TGs and adiponectin. For the isolated atrial study, a combination of rosiglitazone and telmisartan corrected the responses of the atria of HFD-STZ rats to the negative inotropic effect induced by adenosine better than either one did alone, whereas this combination, surprisingly, significantly attenuated the positive inotropic response to β-adrenoreceptor and α-adrenoreceptor agonists. In conclusion, rosiglitazone significantly improved the metabolic and cardiac dysfunctions in T2DM. Moreover, a combination of rosiglitazone and telmisartan offered more improvement in serum TGs and adiponectin, and restored the atrial inotropic response to adenosine. Surprisingly, this combination significantly attenuates the positive inotropic response to α1-adrenoreceptor and β-adrenoreceptor agonists.  相似文献   

11.
The most common form of diabetes, type 2 diabetes (T2D) is a major Public Health issue which is receiving a great deal of attention both in industrial and public research, in order to develop new and more effective drugs. The hyperglycaemia of T2D is the result of two interdependent defects : decreased biological efficacy of insulin in target tissues (insulin resistance), and a decreased capacity for beta cells to secrete insulin in response to glucose. Furthermore, hyperglycaemia evolves with time and even with rigorous treatment there is a progressive deterioration of glucose homeostasis. Seventy five percent of DT2 patients are obese and show a perturbed lipid profile. beta-cell plasticity is a unique property of these cells to adapt their number and volume (beta-cell mass) and their function to the increased secretory demand linked to insulin resistance. This is well documented in physiological (pregnancy) as well in pathophysiological conditions (obesity, acromegaly). Although the lack of reliable techniques makes it very difficult to document it in humans, this property is likely altered in DT2, mainly as a consequence of the prolonged exposure of islet cells to high plasma levels of glucose and free fatty acids (gluco-lipotoxicity). The mechanisms by which hyperglycaemia and hyperlipidemia exert their deleterious effects on the beta-cell include the generation of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) and Advanced Glycosylation End Products (AGE). Altogether the prevailing clinical and experimental data urge us to consider that the pathophysiology of DT2 lies, at least in part, the inability of beta-cells to adapt their functional mass to the prevailing insulin demand. This re-evaluation of the pathophysiology of DT2 stimulates the research of new therapeutic approaches aimed at maintaining and/or restoring the functional beta-cell mass by targeting the mechanisms responsible for its decrease.  相似文献   

12.
Background: Women with a history of gestational diabetes mellitus (GDM) are at high risk for type 2 diabetes mellitus (T2DM).Objective: We reviewed prospective studies of antepartum glucose tolerance test results as risk factors for development of T2DM among women with a history of GDM.Methods: We searched 4 electronic databases and hand-searched 13 journals for literature published through January 2007. The search strategy consisted of medical subject headings and text words for GDM, T2DM, and other relevant terms. Articles were excluded for the following reasons: (1) not written in English; (2) no human data; (3) no original data; (4) <90% of sample was diagnosed with GDM without a separate analysis for women with GDM; (5) case report or series; (6) diagnosis of GDM not based on 3-hour 100-g oral glucose tolerance test (OGTT) or 2-hour 75-g OGTT; (7) T2DM not evaluated as outcome; (8) no relative measure of association or incidence reported; or (9) design did not address antepartum OGTT as a predictor of T2DM. Two investigators independently reviewed citations, performed serial data abstraction on full articles, and assessed the quality of each article. Data were abstracted for study participants and characteristics, T2DM diagnosis, length of follow-up, regression model covariates, and measures of association and variability.Results: Of 11,400 unique citations, we identified 11 articles that evaluated antepartum glucose testing and risk of T2DM in women with a history of GDM. Five studies found that the fasting blood glucose (FBG) on the antepartum diagnostic OGTT was a significant predictor of T2DM (odds ratio [OR] range: 11.1–21.0; relative risk [RR] range: 1.37–1.5; relative hazard [RH] = 2.47). Risk of incident T2DM was predicted by the antepartum 2-hour OGTT plasma glucose in 3 studies (OR range: 1.02–1.03; RR = 1.3) and by the antepartum OGTT glucose AUC in 3 other studies (OR range: 3.64–15; RH = 2.13). Overall, study quality was limited by high losses to follow-up (>20% in 6 studies) and short duration. Few studies adjusted for adiposity, an established diabetes risk factor.Conclusion: FBG, OGTT 2-hour blood glucose, and OGTT glucose AUC appeared to be strong and consistent predictors of subsequent T2DM among women who met diagnostic criteria for GDM using the OGTT.  相似文献   

13.
Beta- and alpha-cell dysfunction in type 2 diabetes.   总被引:3,自引:0,他引:3  
Insulin resistance is a common pathogenetic feature of type 2 diabetes. However, hyperglycemia would not develop if a concomitant defect in insulin secretion were not present. Impaired insulin secretion results from functional and survival defects of the beta-cell. The functional defects can be demonstrated early in the natural history of diabetes and they are hallmarked by abnormal pulsatility of basal insulin secretion and loss of first-phase insulin release in response to a glucose challenge. Moreover, a significant reduction of the beta-cell mass is apparent at the time of the diagnosis of diabetes. The progressive increase in glucose levels, that seems to characterize the natural history of type 2 diabetes, has been claimed to be largely due to progressive reduction of function and mass of beta-cells. Although a genetic predisposition is likely to account for impaired insulin secretion, chronic exposure to hyperglycemia and high circulating FFA is likely to contribute to both functional and survival defects. The disturbance in the endocrine activity of the pancreas is not limited to insulin, since a concomitant increase in fasting plasma glucagon and impaired suppression after the ingestion of an oral glucose load are often observed. This alteration becomes prominent after the ingestion of a mixed meal, when plasma glucagon remains much higher in the diabetic patient as compared to normal individuals. The disproportionate changes in the plasma concentration of the two pancreatic hormones is clearly evident when the insulin:glucagon molar ratio is considered. It is the latter that mainly affects hepatic glucose production. Because of the reduction of the insulin:glucagon molar ratio basal endogenous glucose concentration will be higher causing fasting hyperglycemia, while the hepatic glucose output will not be efficiently suppressed after the ingestion of a meal, contributing to excessive post-prandial glucose rise. Correcting beta- and alpha-cell dysfunction becomes, therefore, an attractive and rational therapeutic approach, particularly in the light of new treatments that may directly act on these pathogenetic mechanisms of type 2 diabetes.  相似文献   

14.
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D.  相似文献   

15.
Type 2 diabetes mellitus (T2DM) is characterized by progressive β‐cell dysfunctioning and insulin resistance. This article reviews recent literature with special focus on inflammatory mechanisms that provoke the pathogenesis of T2DM. We have focused on the recent advances in progression of T2DM including various inflammatory mechanisms that might induce inflammation, insulin resistance, decrease insulin secretion from pancreatic islets and dysfunctioning of β‐cells. Here we have also summarized the role of various pro‐inflammatory mediators involved in inflammatory mechanisms, which may further alter the normal structure of β‐cells by inducing pancreatic islet's apoptosis. In conclusion, it is suggested that the role of inflammation in pathogenesis of T2DM is crucial and cannot be neglected. Moreover, the insight of inflammatory responses in T2DM may provide a new gateway for the better treatment of diabetes mellitus. J. Cell. Biochem. 114: 525–531, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Muscle contains the largest reservoir of glycogen (Glyc), a depot that is closely regulated and with influence on insulin sensitivity. The current study examines muscle Glyc in type 2 diabetes mellitus (T2DM) and obesity and with respect to muscle fiber type, intramyocellular lipid content (IMCL), and mitochondrial function (oxidative enzyme activity; OX-Enz). There is increasing interest in the relation of IMCL and mitochondrial dysfunction with insulin resistance (IR), yet the association with muscle Glyc has not been examined with regard to these parameters. Using a quantitative histological approach specific to muscle fiber types, we assessed muscle Glyc, IMCL, and OX-Enz in vastus lateralis obtained by percutaneous biopsy in lean nondiabetic (L; n = 16), obese nondiabetic (Ob; n = 15), and T2DM volunteers (n = 14). Insulin sensitivity was estimated using homeostasis model assessment (HOMA)-IR. Muscle Glyc was reduced in T2DM, a deficit evident for type IIa fibers, yet minor in types I and IIb fibers. Low Glyc in T2DM correlated with fasting hyperglycemia. Also, in T2DM and Ob, there was significantly higher IMCL and lower OX-Enz in all fiber types. The IMCL-to-OX-Enz ratio, especially for type I fibers, correlated strongly with IR. Similarly, a Glyc-to-OX-Enz ratio correlated with IR, particularly for type IIb fibers. This ratio tended to be higher in Ob and T2DM. In summary, there is decreased muscle Glyc in T2DM yet a disproportional Glyc-to-OX-Enz relationship that is related to IR, although not as robustly as the IMCL-to-OX-Enz ratio.  相似文献   

17.
Suppression of lipid oxidation (L(ox)) by insulin is impaired in obesity and type 2 diabetes mellitus (T2DM). Here we tested whether high L(ox) represents a primary or acquired characteristic in the pathogenesis of T2DM. Hood-indirect calorimetry was performed under postabsorptive conditions and during a two-step hyperinsulinemic euglycemic clamp (insulin infusion rates in mU.m(-2).min(-1): 40 low and 400 high) in 465 Pima Indians: 317 with normal glucose tolerance (NGT), 117 with impaired glucose tolerance (IGT), and 31 with T2DM. The predictive effect of net lipid oxidation (L(ox)) on development of T2DM was assessed in 296 subjects (51 of whom developed T2DM), whereas the predictive effect of L(ox) on followup changes in insulin-mediated glucose disposal (M) and acute insulin response (AIR) was studied in 190 subjects with NGT at baseline. Cross-sectionally, after adjustment for age, sex, body fat (BF), and M low, L(ox) low was increased in T2DM compared with NGT and IGT subjects (P < 0.05). Prospectively, after adjustment for followup duration, age, sex, BF, M, and AIR, increased clamp L(ox) predicted T2DM [hazard rate ratios (95% CI): L(ox) low, 1.5 (1.1, 2.0), P < 0.01; L(ox) high, 1.3 (1.0, 1.8), P = 0.05]. High L(ox) low at baseline was also associated with subsequent worsening of M low (P = 0.04). These data indicate that the inability of insulin to suppress L(ox) may represent an early risk marker for insulin resistance and T2DM that is independent of adiposity, acute insulin secretion, and insulin action on glucose uptake.  相似文献   

18.
The aim of this study was to examine the long-term effects of synthetic chow diet on the metabolic pattern of diabetic syndrome in a large group of sand rats. Few animals had a fulminating reaction with markedly decreased glucose tolerance, low plasma insulin levels and death within 3-4 weeks. But the most of sand rats developed obesity and elevated plasma insulin levels. From the third month, 40% of sand rats presented a diabetic syndrome with hyperinsulinemia, hyperglycemia, markedly decreased glucose tolerance and insulin resistance. Plasma lipids were increased; the lipid and glycogen accumulation in the liver was high. So this diabetic syndrome can be compared to maturity onset diabetes. If this synthetic chow diet lasted more than 6 months, the most of animals lost considerable weight with a strong lipid depletion of fat stores. Serum immunoreactive insulin levels fall and the blood glucose rose over 500 mg/100 ml with glycosuria and ketonuria . The elevated triglyceride content of plasma and the lipid deposits in the liver were exaggerated; glycogen had disappeared. Animals developed an overtly insulin- dependent diabetes, the latter phase of the disease. The sand rat appears to us as a potentially interesting model for investigation both maturity onset and ketotic-type diabetic syndrome.  相似文献   

19.
目的:观察二氢杨梅素(DHM)对2型糖尿病(T2DM)小鼠认知功能障碍及海马中BDNF蛋白表达的影响。方法:将40只C57BL/6J小鼠首先随机分为两组:正常对照组(n=8):普通饲料喂养;2型糖尿病模型组(n=32):高糖高脂联合100 mg/kg的STZ处理(造模过程中死亡5只,不成功3只)。24只建模成功的小鼠随机分成3组:T2DM组、T2DM+L-DHM组和T2DM+H-DHM组,3组小鼠高糖高脂喂养,同时分别用等体积生理盐水、125 mg/(kg·d)的DHM和250 mg/(kg·d)的DHM (1次/天,灌胃)处理16周。正常对照小鼠继续普通饲料喂养,同时用等体积生理盐水(1次/天,灌胃)处理16周。16周后测定小鼠体重、空腹血糖、进行腹腔注射葡萄糖耐量实验和相关行为学实验。最后,Western blot检测各组小鼠海马中BDNF蛋白的表达。结果:高糖高脂联合100 mg/kg的STZ成功建立2型糖尿病小鼠模型。16周后,与正常对照组相比,T2DM组小鼠体重明显下降,空腹血糖显著升高,糖耐量显著异常;而T2DM+DHM组相比T2DM组小鼠体重却显著增加、空腹血糖降低,且H-DHM可显著改善T2DM小鼠糖耐量异常。行为学实验结果显示:与正常对照组相比,T2DM组小鼠学习记忆能力明显下降;与T2DM组相比,T2DM+DHM组小鼠学习记忆能力得到改善,且H-DHM组更为明显。Western blot结果显示:与对照组相比,T2DM组小鼠海马中BDNF蛋白表达显著下降,而DHM组相比T2DM组小鼠其BDNF蛋白的表达明显增加。结论:二氢杨梅素可改善2型糖尿病小鼠认知功能障碍,其机制可能通过降血糖作用,并激活海马中BDNF蛋白表达。  相似文献   

20.
Intranasal insulin (II) administration is widely used in the last years to treat Alzheimer’s disease and other cognitive disorders. Meanwhile, it is almost not used to treat type 2 diabetes mellitus (DM2), mainly due to insufficiently studied molecular mechanisms of its effect on the hormonal and metabolic status of the organism. The effect of II on activity of the hypothalamic signaling systems playing a key role in central regulation of energy metabolism is also poorly studied. The aim of this work was to study the effect of 5-week II treatment of male rats with the neonatal model of DM2 (0.48 ME/rat) both on the metabolic parameters and functional activity of the hypothalamic signaling systems. II treatment of diabetic rats (DI group) was shown to normalize the blood glucose level and restore glucose tolerance and utilization. In the hypothalamus of the DI group, the regulatory effects of agonists of the type 4 melanocortin receptor (MC4R), type 2 dopamine receptor (D2-DAR) and serotonin 1B receptor (S1BR) on adenylyl cyclase (AC) activity, reduced under DM2, were found to be restored; moreover, the inhibitory effect of S1BR agonists became even stronger as compared to control. In the DI group, the restoration of AC hormonal regulation was associated with a considerable increase in expression of the genes encoding S1BR and MC4R. Besides, the attenuation of the AC-stimulating effect of D2-DAR agonists against the background of decreasing expression of the Drd1 gene was found to promote the enhancement of the negative effect of dopamine on AC activity. II treatment did not have a considerable effect on expression of the genes encoding the insulin receptor and insulin receptor substrate-2, which was slightly reduced in the hypothalamus of diabetic rats. Thus, II treatment of rats with the neonatal model of DM2 partially restores the hypothalamic AC signaling pathways regulated by melanocortin, serotonin and dopamine, demonstrating thereby one of the mechanisms of the positive influence of II on energy metabolism and insulin sensitivity in peripheral tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号