首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants are regarded as a promising system for the production of heterologous proteins. However, little is known about the influence of plant development and growth conditions on N-linked glycosylation. To investigate this, transgenic tobacco (Nicotiana tabacum cv Samsun NN) plants expressing a mouse immunoglobulin G antibody (MGR48) were grown in climate rooms under four different climate conditions, i.e. at 15 degrees C and 25 degrees C and at either low or high light conditions. N-glycans on plantibodies and soluble endogenous proteins were analyzed with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS). Antibodies isolated from young leaves have a relatively high amount of high- mannose glycans compared with antibodies from older leaves, which contain more terminal N-acetylglucosamine. Senescence was shown to affect the glycosylation profile of endogenous proteins. The relative amount of N-glycans without terminal N-acetylglucosamine increased with leaf age. Major differences were observed between glycan structures on endogenous proteins versus those on antibodies, probably to be attributed to their subcellular localization. The relatively high percentage of antibody N-glycan lacking both xylose and fucose is interesting.  相似文献   

2.
Medina  L; Grove  K; Haltiwanger  RS 《Glycobiology》1998,8(4):383-391
SV40 large T antigen has been reported to be modified with several different sugars including N-acetylglucosamine, galactose, and mannose. In this report we have reexamined the glycosylation of T antigen and found that while we could detect modification with N-acetylglucosamine, we could not detect any other sugars on the protein. Surprisingly, even though [3H]galactose could be metabolically incorporated into the protein, analysis showed that all of the radioactivity in T antigen had been converted to other species. The N-acetylglucosamine was demonstrated to be linked to the protein in the form of O-linked N- acetylglucosamine, the best characterized form of nuclear and cytoplasmic glycosylation in mammalian systems. We have localized the major site of glycosylation to the amino terminal portion of the molecule. Analysis of mutated T antigen where serines 111/112 were substituted with alanine suggest that these residues constitute a glycosylation site on the protein. These two serines fall within a typical O-linked N-acetylglucosamine glycosylation site (PSS) and are also known to be phosphorylated. Thus, it is likely that competition between phosphorylation and glycosylation occurs at this site.   相似文献   

3.
The N-glycans of human serum transferrin produced in Trichopulsia ni cells were analyzed to examine N-linked oligosaccharide processing in insect cells. Metabolic radiolabeling of the intra- and extracellular protein fractions revealed the presence of multiple transferrin glycoforms with molecular weights lower than that observed for native human transferrin. Consequently, the N-glycan structures of transferrin in the culture medium were determined using three-dimensional high performance liquid chromatography. The attached oligosaccharides included high mannose, paucimannosidic, and hybrid structures with over 50% of these structures containing one fucose, alpha(1,6)-, or two fucoses, alpha(1,6)- and alpha(1,3)-, linked to the Asn-linked N-acetylglucosamine. Neither sialic acid nor galactose was detected on any of the N-glycans. However, when transferrin was coexpressed with beta(1,4)-galactosyltransferase three additional galactose-containing hybrid oligosaccharides were obtained. The galactose attachments were exclusive to the alpha(1, 3)-mannose branch and the structures varied by the presence of zero, one, or two attached fucose residues. Furthermore, the presence of the galactosyltransferase appeared to reduce the number of paucimannosidic structures, which suggests that galactose attachment inhibits the ability of hexosaminidase activity to remove the terminal N-acetylglucosamine. The ability to promote galactosylation and reduce paucimannosidic N-glycans suggests that the oligosaccharide processing pathway in insect cells may be manipulated to mimic more closely that of mammalian cells.  相似文献   

4.
Glycosylation analysis of recombinant glycoproteins is of importance for the biopharmaceutical industry and the production of glycoprotein pharmaceuticals. A commercially available lectin array technology was evaluated for its ability to present a reproducible fingerprint of a recombinant CTLY4-IgG fusion glycoprotein expressed in large scale CHO-cell fermentation. The glycosylation prediction from the array was compared to traditional negative mode capillary LC-MS of released oligosaccharides. It was shown that both methods provide data that allow samples to be distinguished by their glycosylation pattern. This included information about sialylation, the presence of reducing terminal galactose β1-, terminal N-acetylglucosamine β1-, and antennary distribution. With both methods it was found that a general trend of increased sialylation was associated with an increase of the antenna and reduced amount of terminal galactose β1-, while N-acetylglucosamine β1- was less affected. LC-MS, but not the lectin array, provided valuable information about the sialic acid isoforms present, including N-acetylneuraminic acid, N-glycolylneuraminic acid and their O-acetylated versions. Detected small amounts of high-mannose structures by LC-MS correlated with the detection of the same epitope by the lectin array.  相似文献   

5.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 +/- 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 +/- 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed.  相似文献   

7.
Wright A  Sato Y  Okada T  Chang K  Endo T  Morrison S 《Glycobiology》2000,10(12):1347-1355
We have now produced mouse-human chimeric IgG1 in wild-type Chinese hamster ovary (CHO) cell lines Pro-5 as well as in the glycosylation mutants Lec 2, Lec 8, and Lec 1. Analysis of the attached carbohydrates shows those present on IgG1-Lec 1 were mannose terminated. Carbohydrate present on IgG1-Lec8 was uniformly biantennary terminating in N-acetylglucosamine. The glycosylation profiles of IgG1-Lec 2 and IgG1-Pro-5 were heterogeneous. Only IgG1-Pro-5 was sialylated with sialic acid present on only a small percentage of the carbohydrate structures. When the in vivo fate of antibodies labeled with (125)I-lactotyramine was determined, it was found that the majority of all of the antibodies, irrespective of the structure of their attached carbohydrate, is catabolized in the skin and muscle. However, the attached carbohydrate structure does influence the amount that is catabolized in the liver and the liver serves as a major site for the catabolism of proteins bearing carbohydrate with the Lec2 (with terminal galactose) or Lec1(with terminal mannose) structure.  相似文献   

8.
The glycosylation of human cytokeratin (CK) 8 and 18 was studied after metabolic labeling of HT29 colonic cells with [3H]glucosamine. Labeling of CK8/18 was not inhibited by tunicamycin, suggesting that glycosylation was not N-linked. Acid hydrolysis of CK8 and CK18, purified from [3H]glucosamine-labeled cells, generated free glucosamine. In the presence of UDP-[3H]galactose, galactosyltransferase catalyzed the labeling of cytokeratin 8 and 18. beta-Elimination of the [3H]galactose- labeled CK8/18 generated the disaccharide N-acetyllactosaminitol, indicating that cytokeratin 8 and 18 contain single O-linked N-acetylglucosamine residues. Using chemical analysis, the stoichiometry of glycosylation was found to be 1.5 and 2 molecules of N-acetylglucosamine/protein molecule of CK8 and CK18, respectively. Peptide maps of [3H]glucosamine-labeled CK8/18 showed that multiple peptides were labeled with the amino sugar. The biosynthetic and degradation rates of the carbohydrate moiety were faster than the protein core as determined by metabolic radiolabeling or pulse-chase experiments, respectively. Our results show that CK8 and 18 are glycosylated at multiple sites with a single O-linked N-acetylglucosamine. Furthermore, CK8/18 glycosylation is a dynamic process which is likely to have functional relevance.  相似文献   

9.
Chen R  Wang F  Tan Y  Sun Z  Song C  Ye M  Wang H  Zou H 《Journal of Proteomics》2012,75(5):1666-1674
Direct mass spectrometric analysis of aberrant protein glycosylation is a challenge to the current analytical techniques. Except lectin affinity chromatography, no other glycosylation enrichment techniques are available for analysis of aberrant glycosylation. In this study, we developed a combined chemical and enzymatic strategy as an alternative for the mass spectrometric analysis of aberrant glycosylation. Sialylated glycopeptides were enriched with reverse glycoblotting, cleaved by endoglycosidase F3 and analyzed by mass spectrometry with both neutral loss triggered MS3 in collision induced dissociation (CID) and electron transfer dissociation (ETD). Interestingly, a great part of resulted glycopeptides were found with fucose attached to the N-acetylglucosamine (N-GlcNAc), which indicated that the aberrant glycosylation that is carrying both terminal sialylation and core fucosylation was identified. Totally, 69 aberrant N-glycosylation sites were identified in sera samples from hepatocellular carcinoma (HCC) patients. Following the identification, quantification of the level of this aberrant glycosylation was also carried out using stable isotope dimethyl labeling and pooled sera sample from liver cirrhosis and HCC was compared. Six glycosylation sites demonstrated elevated level of aberrancy, which demonstrated that our developed strategy was effective in both qualitative and quantitative studies of aberrant glycosylation.  相似文献   

10.
1H-N.m.r. spectroscopy was used to elucidate the primary structures of the carbohydrate moiety attached to asparagine at residue 53 in the first domain of turkey ovomucoid, a serine proteinase inhibitor. The carbohydrate moiety is a heterogeneous mixture of three structurally closely related complex-type oligosaccharides. Of the total carbohydrate moiety, 61% is tetra-antennary with terminal galactose and with an intersecting N-acetylglucosamine, and containing an additional N-acetylglucosamine (10') attached to mannose (4'). Another 23% is tri-antennary with terminal galactose and with an intersecting N-acetylglucosamine. The remaining 16% is tri-antennary with terminal galactose (6 and 8 only), with an intersecting N-acetylglucosamine.  相似文献   

11.
Characterization of mucins in the alimentary tract of the grass snake, Natrix natrix was performed by histochemical (PAS, Alcian Blue, pH 2.5 and pH 1.0, sialidase-Alcian Blue, pH 2.5, HID-AB pH 2.5) and lectin-histochemical (WGA, SWGA, PNA, sialidase-PNA, SBA, sialidase-SBA, DBA, sialidase-DBA, ConA, BSI-B4, AAA, UEA-1, LTA) techniques. Oesophageal lining epithelium consisted of ciliated and goblet cells, with no pluricellular glands. Mannosylated sialosulfomucins were observed. Fundic mucosa of stomach presented surface cells producing sialomucins with terminal sialic acid linked to galactose. In gastric glands neck and oxynticopeptic cells were found. Neck cells had sialomucins with mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine and fucose-α-(1,2)-linked residues. Cytoplasm of oxynticopeptic cells showed N-acetylgalactosamine and fucose residues. Secretion of surface cells in pyloric mucosa was similar to that of fundic ones, differing in having fucose. Goblet cells in the small intestine of N. natrix produced sulfo- and sialomucins, with sialic acid linked to galactose and N-acetylgalactosamine residues. Mucins also presented residues of mannose. Goblet cells in the large intestine presented sulfomucins only, with terminal N-acetylgalactosamine, galactose and N-acetylglucosamine. The glycosylation patterns found are probably related to protection against injuries, gastric juice and microorganisms, both pathogenic and decomposers, as well as to dietary adaptations.  相似文献   

12.
The N-linked oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus 1 derived from chronically infected lymphoblastoid (H9) cells have been investigated by enzymatic microsequencing after release from protein by hydrazinolysis, labeling with NaB3H4, and chromatography on adsorbent columns of Phaseolus vulgaris erythrophytohemagglutinin and Ricinus communis agglutinin (Mr 120,000) and on Bio-Gel P-4. A substantially greater diversity of oligosaccharide structures was detected than among those released by hydrazinolysis from recombinant gp120 produced in Chinese hamster ovary cells and investigated by similar procedures (Mizuochi, T., Spellman, M.W., Larkin, M., Solomon, J., Basa, L.J., and Feizi, T. (1988) Biochem J. 254, 599-603) and among those released by endoglycosidases from virus-derived gp120 isolated from infected H9 cells after metabolic labeling with D-[2-3H]mannose or D-[6-3H]glucosamine (Geyer, H., Holschbach, L., Hunsmann, G., and Schneider, J. (1988) J. Biol. Chem. 263, 11760-11767). In this study, 16% of the oligosaccharides were identified as complex-type bi-, tri-, and tetraantennary sialo-oligosaccharides with bisecting N-acetylglucosamine residues. Such structures were lacking on recombinant gp120 and could not be detected on the metabolically labeled, virus-derived glycoprotein. As in the earlier investigations, complex-type chains lacking bisecting N-acetylglucosamine residues, hybrid-type chains, and a series of high mannose-type structures with 5-9 mannose residues were identified. In addition, an array of complex-type chains having one or more outer chains with beta-galactosyl residues were detected in this study, but with additional substitutions that require further investigation. The number of potential N-glycosylation sites on gp120 is on the order of 20, but the oligosaccharide structures are far more numerous. Thus, the salient conclusion from this and earlier investigations is that alternative structures occur on at least some of the glycosylation sites and that numerous glycosylation variants of this glycoprotein are produced even within a single cell line. Since the glycosylation is the product of host cell glycosyltransferases, an even greater number of glycosylation variants of gp120 are predicted to arise from the heterogeneous cell populations harboring the virus in in vivo infection.  相似文献   

13.
Variable N-glycosylation at Asn(297) in the Fc region of recombinant therapeutic immunoglobulin G (IgG) molecules, specifically terminal galactosylation and sialylation, may affect both pharmacokinetic behavior and effector functions of recombinant therapeutic antibodies. We investigated the hypothesis that IgG Fc glycosylation can be controlled by manipulation of cellular nucleotide-sugar metabolism. In control cultures, N-glycans associated with the Fc domain of a recombinant humanized IgG1 produced by GS-NS0 cells in culture were predominantly biantennary, variably beta-galactosylated (average 0.3 mol galactose complex N-glycan(-1)) structures with no bisecting N-acetylglucosamine residues, sialylation, or alpha1,3-linked galactosylation evident. However, a variable proportion (5% to 15%) of high-mannose (Man5 to Man9) oligosaccharides were present. To manipulate the cellular content of the nucleotide sugar precursor required for galactosylation, UDP-Gal, we included either 10 mM glucosamine or 10 mM galactose in the culture medium. In the case of the former, a 17-fold increase in cellular UDP-N-acetylhexosamine content was observed, with a concomitant reduction (33%) in total UDP-hexose, although the ratio of UDP-Glc:UDP-Gal (4:1) was unchanged. Associated with these alterations in cellular UDP-sugar content was a significant reduction (57%) in the galactosylation of Fc-derived oligosaccharides. The proportion of high-mannose-type N-glycans (specifically Man5, the substrate for N-acetylglucosaminyltransferase I) at Asn(297) was unaffected. In contrast, inclusion of 10 mM galactose in culture specifically stimulated UDP-Gal content almost five-fold. However, this resulted in only a minimal, insignificant increase (6%) in beta1,4-galactosylation of Fc N-glycans. Sialylation was not improved upon the addition of the CMP-sialic acid (CMP-SA) precursor N-acetylmannosamine (20 mM), even with an associated 44-fold increase in cellular CMP-SA content. Analysis of recombinant IgG1 Fc glycosylation during batch culture showed that beta1,4-linked galactosylation declined slightly during culture, although, in the latter stages of culture, the release of proteases and glycosidases by lysed cells were likely to have contributed to the more dramatic drop in galactosylation. These data demonstrate: (i) the effect of steric hindrance on Fc N-glycan processing; (ii) the extent to which alterations in cellular nucleotide-sugar content may affect Fc N-glycan processing; and (iii) the potential for direct metabolic control of Fc N-glycosylation.  相似文献   

14.
We have established a ricin-resistant glycosylation-defective PC12 pheochromocytoma cell line to study biochemically glycoprotein traffic from the cell surface to the Golgi apparatus in regulated secretory cells. The strategy employed in this study is a modification of that used previously (Duncan, J. R., and Kornfeld, S. (1988) J. Cell Biol. 106, 617-628) to demonstrate transport of the cation-independent and -dependent mannose 6-phosphate receptors from the cell surface to the trans-Golgi network in nonsecretory cell types. In ricin-resistant PC12 cells, radiolabeled galactose was incorporated enzymatically into surface glycoconjugates, primarily glycoproteins. Resistance to beta-galactosidase was acquired upon reculture at 37 degrees C due to further terminal glycosylation of the galactose residues. Treatment of N-linked oligosaccharides isolated from recultured cells with a variety of glycosidases in conjunction with beta-galactosidase demonstrated the addition of sialic acid N-acetylglucosamine and fucose residues to the galactose residues in recultured cells. Resistance to beta-galactosidase was not acquired in cells recultured at 19 degrees C, indicating that subsequent glycosylation of galactose residues did not occur at the cell surface or in endosomes. While glycosylation of galactose incorporated into asparagine oligosaccharides in Chinese hamster ovary clone 13 cells was not significant (less than 1%) after 6 h of reculture, approximately 10% of the galactose incorporated into surface oligosaccharides was further glycosylated in PC12 cells in this time. Analysis of total labeled versus beta-galactosidase-resistant proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that endocytic traffic to the site of glycosylation activity in mutant PC12 cells was highly selective, but included a much greater number of proteins than were detected in Chinese hamster ovary clone 13 fibroblasts.  相似文献   

15.
We have previously demonstrated by the immunoperoxidase method the presence of a chicken heterophile antigenic determinant (CHAD-1) in medullary lymphocytes of the bursa of Fabricius and thymus as well as in some nonlymphoid cells. It has been found that the anti-CHAD-1 antibody could be neutralized by absorption with several glycoproteins or glycopeptides containing highly branched, asparagine-linked oligosaccharides terminating in N-acetylglucosamine residues. In the present study, fetuin, desialo-fetuin, and a series of 27 highly purified oligosaccharides with well-defined structures were used to investigate the chemical composition and fine structure of the CHAD-1 epitope. It was shown that anti-CHAD-1 antibody binds to oligosaccharides with at least three terminal N-acetyl glucosamine residues at the nonreducing end. These residues may be linked beta 1-2, beta 1-4, or beta 1-6 to one, two, or three different mannose residues. The antibody combining site accommodates at least four carbohydrate residues. Oligosaccharides containing five or six terminal N-acetylglucosamine residues at the nonreducing end demonstrated the highest immunoreactivity with the anti-CHAD-1 antibody. Substitution of terminal N-acetylglucosamine residues with galactose, or with galactose and sialic acid, masks CHAD-1. On the basis of this work, epitopes that react with the anti-CHAD-1 antibody will be renamed terminal N-acetylglucosamine cluster antigens (TGCA). Anti-TGCA antibody has potential use in the monitoring of biosynthetic processing of asparagine-linked oligosaccharides and in studies of their cellular distribution and functions.  相似文献   

16.
Notch signaling plays critical roles in animal development and physiology. The activation of Notch receptors by their ligands is modulated by Fringe-dependent glycosylation. Fringe catalyzes the addition of N-acetylglucosamine in a beta1,3 linkage onto O-fucose on epidermal growth factor-like domains. This modification of Notch by Fringe influences the binding of Notch ligands to Notch receptors. However, prior studies have relied on in vivo glycosylation, leaving unresolved the question of whether addition of N-acetylglucosamine is sufficient to modulate Notch-ligand interactions on its own, or whether instead it serves as a precursor to subsequent post-translational modifications. Here, we describe the results of in vitro assays using purified components of the Drosophila Notch signaling pathway. In vitro glycosylation and ligand binding studies establish that the addition of N-acetylglucosamine onto O-fucose in vitro is sufficient both to enhance Notch binding to the Delta ligand and to inhibit Notch binding to the Serrate ligand. Further elongation by galactose does not detectably influence Notch-ligand binding in vitro. Consistent with these observations, carbohydrate compositional analysis and mass spectrometry on Notch isolated from cells identified only N-acetylglucosamine added onto Notch in the presence of Fringe. These observations argue against models in which Fringe-dependent glycosylation modulates Notch signaling by acting as a precursor to subsequent modifications and instead establish the simple addition of N-acetylglucosamine as a basis for the effects of Fringe on Drosophila Notch-ligand binding.  相似文献   

17.
Six monoclonal antibodies, three each of human IgG1 and IgG2 subclasses, were obtained from human-mouse hybridomas. Structural study of their asparagine-linked sugar chains was performed to elucidate the regulatory mechanism of secreted monoclonal IgG glycosylation. The sugar moieties were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by NaB3H4 reduction after N-acetylation. Structural study of each oligosaccharide by lectin affinity column chromatography, sequential exoglycosidase digestion, and methylation analysis indicated that almost all of them were biantennary complex-type sugar chains containing Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)GlcNAc as core structures. Bisecting N-acetylglucosamine residue, which is present in human IgG but not in mouse IgG, could not be detected at all. The molar ratio of each oligosaccharide from the six IgG samples was different. However, no subclass specificity was detected except that all IgG1 contained neutral, mono-, and disialylated sugar chains, whereas IgG2 did not contain disialylated ones. The molar ratio of N-acetylneuraminic acid to N-glycolylneuraminic acid was also different for each IgG. All six IgGs contained monoantennary complex-type and high mannose-type oligosaccharides which had never been detected in serum IgGs of various mammals so far investigated. These results indicated that the processing of asparagine-linked sugar chains of IgG is less complete in human-mouse hybridoma than in human or mouse B cells, and that the glycosylation machinery of the mouse cells is dominant in the hybrid cells.  相似文献   

18.
The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennary-type complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of N-acetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using UDP-14C-Gal and CMP-14C-Sia as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the red blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.  相似文献   

19.
The metabolism of glucosamine in chick embryo fibroblasts was studied at different concentrations of the amino sugar added to the culture medium. In glucose-containing medium the well-known metabolites, UDP-N-acetylglucosamine, N-acetylglucosamine 6-phosphate and N-acetylglucosamine, are detectable after inhibition of glycosylation resulting from glucosamine treatment. Especially when the cells were infected with influenza virus, high intracellular concentrations of non-metabolized glucosamine are demonstrable in addition. Removal of the inhibitor from the medium results in release of the block of influenza virus glycoprotein glycosylation within 10 min. The onset of glycosylation is paralleled by a rapid reduction of intracellular levels of glucosamine without significant changes in the concentration of its metabolites. Furthermore, concentrations of GDP-mannose, UDP-glucose, and UDP-galactose remain constant for at least 30 min after reversal of the block. It is concluded that glucosamine as such exerts its effect on glycosylation, rather than one of its metabolites being responsible for this effect.  相似文献   

20.
The oligosaccharide structures linked to Asn289 of a recombinant (r) variant (R561S) human plasminogen (HPg) expressed in Chinese hamster ovary (CHO) cells, after transfection of these cells with a plasmid containing the cDNA coding for the variant HPg, have been determined. Employing high-performance anion-exchange liquid chromatography mapping of the oligosaccharide units cleaved from the protein by glycopeptidase F, compared with elution positions of standard oligosaccharides, coupled with monosaccharide compositional determinations and analyses of sequential exoglycosidase digestions and specific lectin binding, we find that considerable microheterogeneity in oligosaccharide structure exists at this sole potential N-linked glycosylation site on HPg. A variety of high-mannose structures, as well as bi-, tri-, and tetraantennary complex-type carbohydrate, has been found, in relative amounts of 1-25% of the total oligosaccharides. The complex-type structures contain variable amounts of sialic acid (Sia), ranging from 0 to 5 mol/mol of oligosaccharide in the different glycan structures. Neither hybrid-type molecules, N-acetylglucosamine bisecting oligosaccharides, nor N-acetyllactosaminyl-repeat structures were found to be present in the complex-type carbohydrate pool in observable amounts. Of interest, a significant portion of the Sia exists an outer arm structures in an (alpha 2,6) linkage to the penultimate galactose, a novel finding in CHO cell-directed glycosylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号