首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, fertilization and preimplantation embryo development occurs in the oviduct. Cross-talk between the developing embryos and the maternal reproductive tract has been described in such a way as to show that the embryos modulate the physiology and gene expression of the oviduct. Different studies have indicated that transforming growth factor beta (TGF-β) can modulate the oviductal microenvironment and act as an autocrine/paracrine factor on embryo development. LEFTY2, a novel member of the TGF-β superfamily is involved in the negative regulation of other cytokines in this family such as nodal, activin, BMPs, TGF-β1 and Vg1. In previous studies, we have reported that LEFTY2 is differentially expressed in the rat oviduct during pregnancy. In this study, we describe the temporal pattern of LEFTY2 in pregnant and non-pregnant rat oviduct by western blotting, which showed higher levels of LEFTY2 on day 4 of pregnancy, a time at which the embryos are ending their journey along the oviduct. The cellular location of LEFTY2 was assessed by immunohistochemistry, which showed immunolabelling in the cytoplasm and at the apical surface of the oviductal epithelial cells. The oviductal fluid also presented a 26 kDa band, which corresponds to the biologically active form of this protein, at the preimplantation period of pregnancy, indicating LEFTY2 secretion to the lumen. As LEFTY2 is expressed at a high level just before the embryos pass to the uterus, its biological effect might be relevant and significant for the preimplantation stage of embryo development in the oviduct. The fact that embryos do not express LEFTY2 at this stage of development supports this hypothesis.  相似文献   

2.
Fertilization and development of mouse embryos occur in the ampullae of oviduct. We hypothesize that fetal-maternal communication exists in the preimplantation period, allowing optimal development of embryos. It is known that embryotrophic factors from oviduct affect the development of embryos. Although embryos affect their own transport in the oviduct, the mechanism of action is unknown. As a step toward understanding the action of embryos on oviductal physiology, we adopted suppression subtractive hybridization (SSH) to compare the gene expression in the mouse oviduct containing early embryos with that of oviduct containing oocytes. Ten to twelve 1-cell mouse embryos were transferred to one oviduct of a foster mother and similar number of oocytes were transferred to the contralateral oviduct. The animals were sacrificed after 48 h and their oviducts were excised for mRNA study. Using SSH, we screened out 250 putative positive clones from the subtracted embryo-containing oviduct library and 97 of them were screened positive by reverse dot-blot analysis. DNA sequence analysis identified genes that shared high homology with sequences in GenBank/EMBL database with unknown functions. Overall, 13 of the 90 high-quality sequences (14%) were homologous to 6 different genes previously described. Reverse Northern analysis confirmed that the expression of these genes were higher in the embryo-containing oviduct than in the oocyte-containing oviduct. About 12% of these clones (11/90) were novel. This article is the first to report identification of genes in the oviduct that are upregulated in the presence of embryos during the preimplantation period.  相似文献   

3.
4.
5.
6.
The human oviduct derived embryotrophic factor-3 (ETF-3) contains complement protein-3 (C3) and its derivates. Although C3 is not embryotrophic, it is converted into the embryotrophic derivative, iC3b in the presence of embryos and oviductal cells. The regulation of C3 production in the oviduct is not known. The objectives of this study were to investigate the effects of presence of preimplantation embryos and hormones on C3 expression in the oviducts in vitro and in vivo. The expression of C3 in the oviduct of pregnant mice was compared to that of pseudo-pregnant mice. The hormonal action on C3 expression was studied in the ovariectomized mouse oviducts and human oviductal epithelial (OE) cells. The results showed that the level of C3 mRNA in the mouse oviduct was high on Day 1 and Day 2, but decreased to a minimum on Day 4 of pregnancy, whereas that of pseudo-pregnancy remained relatively stable within the same period. The protein levels of C3 and iC3b specific fragments, alpha-115 and alpha-40, respectively in the mouse oviductal luminal fluid were highest on Day 3 of pregnancy, when the embryos were expected to be most sensitive to the embryotrophic activity of ETF-3. Estrogen elevated C3 expression in the ovariectomized mouse oviduct and the OE cells. Progesterone suppressed estrogen-induced C3 expression in the mouse oviduct, but had no effect on OE cells. In conclusion, the presence of embryo and steroid hormones regulate the synthesis and secretion of oviductal C3.  相似文献   

7.
Various growth factors and proteins produced by oviductal cells have been demonstrated to interact with developing embryos. However, little is known concerning the function of mammalian oviducts at the molecular biological level. This may be partly due to lack of efficient gene transfer to oviductal cells. In this study, we developed an efficient method for transfection of oviductal epithelium using in vivo electroporation (EP) in mice. One microliter of solution containing enhanced green fluorescent protein (EGFP) expression plasmid (0.5 microg) and 0.05% trypan blue (TB) were directly introduced into the ampulla of the eCG-hCG-treated B6C3F1 females at embryonic day (E) 0.6 of pregnancy (corresponding to 14:00-15:00 of the day the plug was recognized). The entire oviduct was then electroporated using tweezer-type electrodes attached to a T820 electroporator (BTX Genetronics, Inc., San Diego, CA) with eight square-wave pulses, 50 V in strength and 50 msec in duration. On E 3.4, embryos at morula/early blastocyst stages were collected and their number, morphology, and EGFP-derived fluorescence recorded. Fluorescence in oviducts was also examined. In some cases, these fluorescent oviducts were subjected to cryostat sectioning. Strong fluorescence was observed in some of the oviductal epithelia, with a maximum level of 36%. Neither the number nor morphology of the collected embryos was affected by EP. Some embryos possessed fluorescence in the blastocoel, but not cytoplasm, suggesting incorporation of EGFP present in the oviductal luminal fluid. This system may enable development of new factors regulating development of preimplantation embryos and offers the prospect of a new approach to understanding oviductal function.  相似文献   

8.
The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.  相似文献   

9.
Abe H  Hoshi H 《Cytotechnology》1997,23(1-3):171-183
Epithelial cells of the mammalian oviduct play an important role in reproductive and developmental events that occur there. Oviductal epithelial cells from several mammalian species can be isolated and cultured in serum or serum-free medium in vitro and cell culture of bovine oviductal epithelial cells (BOEC) has been described by many investigators. Cultured BOEC show a wide variety of secretory activities and these secretory factors may influence early embryonic development or sperm function. Monolayer cultures of BOEC have been widely used for in vitro co-culture of bovine preimplantation embryos. The use of BOEC co-culture systems has improved embryonic development in nearly all the studies conducted. In addition, interaction of bovine spermatozoa with BOEC, in a similar manner to that observed for spermatozoa in vivo, induced specific changes in sperm capacitation and consequently improved the fertilizing capacity of bovine spermatozoa in vitro. Thus co-culture systems with BOEC may not only offer an excellent model for studying the mechanisms of capacitation and acrosome reaction of bovine spermatozoa but also provide a useful tool for the improvement of embryo development in vitro.  相似文献   

10.
The oviduct is an exquisitely designed organ that functions in picking-up ovulated oocytes, transporting gametes in opposite directions to the site of fertilization, providing a suitable environment for fertilization and early development, and transporting preimplantation embryos to the uterus. A variety of biological processes can be studied in oviducts making them an excellent model for toxicological studies. This review considers the role of the oviduct in oocyte pick-up and embryo transport and the evidence that chemicals in both mainstream and sidestream cigarette smoke impair these oviductal functions. Epidemiological data have repeatedly shown that women who smoke are at increased risk for a variety of reproductive problems, including ectopic pregnancy, delay to conception, and infertility. In vivo and in vitro studies indicate the oviduct is targeted by smoke components in a manner that could explain some of the epidemiological data. Comparisons between the toxicity of smoke from different types of cigarettes, including harm reduction cigarettes, are discussed, and the chemicals in smoke that impair oviductal functioning are reviewed.  相似文献   

11.
The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.  相似文献   

12.
This study describes the localization of the U2 small nuclear RNA (snRNA) and the major U snRNA group ribonucleoproteins (snRNPs) during bovine preimplantation development. In vitro maturation, fertilization, and oviductal epithelial cell coculture methods were employed to produce several developmental series totalling over 2,000 preimplantation-stage bovine oocytes and embryos. These oocytes and preimplantation embryos were processed for in situ hybridization, immunofluorescence and Northern blotting methods. The U2 snRNA and the major U group snRNPS were localized initially over the germinal vesicle (GV) of preovulatory oocytes but following GV breakdown were released throughout the ooplasm. They subsequently reassociated with both pronuclei during fertilization. From the two-cell to the blastocyst stages, the U2 snRNA and U snRNPs were localized to the interphase nucleus of each blastomere. The levels of U2 snRNA throughout bovine preimplantation development were determined by probing a Northern blot containing total RNA isolated from the following preimplantation bovine embryo stages: one to two cell, eight to 16 cell, early morula (greater than 32 cell), and late morula/early blastocysts. The levels of U2 snRNA remained constant between the one-cell and eight- to 16-cell bovine embryo stages but increased 4.4-fold between the eight- to 16-cell stage and the late morula/early blastocyst stages. The results suggest that a maternal pool of snRNAs is maintained in mammalian preimplantation embryos regardless of the duration of maternal control of development.  相似文献   

13.
Gametes alter the oviductal secretory proteome   总被引:1,自引:0,他引:1  
The mammalian oviduct provides an optimal environment for the maturation of gametes, fertilization, and early embryonic development. Secretory cells lining the lumen of the mammalian oviduct synthesize and secrete proteins that have been shown to interact with and influence the activities of gametes and embryos. We hypothesized that the presence of gametes in the oviduct alters the oviductal secretory proteomic profile. We used a combination of two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry to identify oviductal protein secretions that were altered in response to the presence of gametes in the oviduct. The oviductal response to spermatozoa was different from its response to oocytes as verified by Western blotting. The presence of spermatozoa or oocytes in the oviduct altered the secretion of specific proteins. Most of these proteins are known to have an influence on gamete maturation, viability, and function, and there is evidence to suggest these proteins may prepare the oviductal environment for arrival of the zygote. Our findings suggest the presence of a gamete recognition system within the oviduct capable of distinguishing between spermatozoa and oocytes.  相似文献   

14.
Almost 30 years after the first successful in vitro fertilization (IVF) in golden hamsters (Mesocricetus auratus), we report that IVF hamster embryos can develop in a chemically defined, protein-free culture medium into morulae and blastocysts, and produce normal offspring after transfer to recipients. When examined 96 h post-insemination, 82% (160/200) of IVF ova had cleaved to at least 2 cells, 55% (97/200) had developed beyond the 4-cell stage, and 22% (38/200) had developed into morulae/blastocysts. In vitro development of IVF embryos to greater than or equal to 8 cells was absolutely dependent on hypotaurine. Twenty living offspring were produced from transfer of IVF embryos to recipients, with an overall success rate of 5% and 17% for oviductal (2-cell) and uterine (8-cell/morulae) transfers, respectively. In vivo-fertilized pronucleate embryos collected 3 h after egg activation were less able to develop in vitro than embryos collected only 6 h later, revealing a critical influence of the oviduct within the first hours of embryo development. Hypotaurine partly compensated for the decreased oviductal exposure of early 1-cell embryos. Establishment of a key role for hypotaurine in hamster embryo development, support of IVF embryos to morula/blastocyst stages in vitro, and production of living offspring after IVF embryo transfer are significant steps towards the goal of obtaining comparative data on preimplantation embryogenesis.  相似文献   

15.
Sengupta J  Ghosh D 《Steroids》2000,65(10-11):753-762
Progesterone secretion during the luteal phase influences oviductal and endometrial functions which are essential for embryo viability and implantation in a number of species including primates. Luteal phase estrogen is not essential for progesterone-dependent endometrial receptivity towards implantation and pregnancy in the rhesus monkey and in the human. However, synchronous development of embryo and endometrium is an essential prerequisite for evolutive implantation. Progesterone helps to maintain synchronous development of preimplantation embryo through its action on maternal uterus. The anti-nidatory action of mifepristone, a potent progesterone receptor modulator (PRM) with pronounced antiprogestagenic activity, is known to be associated with desynchronization of endometrium along with repression of glandular secretory differentiation and vascular maturation. Thus, it is likely that early luteal phase administration of mifepristone affects paracrine action of the secretory stage endometrium on the preimplantation stage embryo, and thereby inhibits embryonic development and viability. We shall examine this hypothesis using the rhesus monkey as a primate model.  相似文献   

16.
17.
干扰素(interferon,IFN)在哺乳动物早期胚胎发育过程中具有重要的生理功能,但是其作用机制尚不清楚.通过筛选卵巢cDNA文库和5′-RACE方法,克隆了兔卵巢干扰素α应答基因(interferonresponsivegene,IFRG)的全长cDNA(登录号:AJ584672).利用RT-PCR证明IFRG在兔卵母细胞和植入前胚胎中均有表达,这将为深入研究IFN在早期胚胎中的作用机制提供理论参考,卵巢原位杂交表明IFRG在成熟卵泡(类型5)的颗粒细胞中有表达,在初级和次级卵泡的膜鞘细胞和粒层细胞中有很高的表达,鉴于这些细胞与卵泡的发育密切相关,推测IFRG在卵泡的发育、成熟和排卵中发挥重要作用.  相似文献   

18.
Mouse embryos at different stages of development were cocultured with human oviduct cells or cultured in the presence of oviduct-derived embryotrophic factor-1, -2, and -3 (ETF-1, -2, and -3) for various amounts of time within the preimplantation period. Cocultures that included the period from 48 to 72 h post-hCG stimulated cell division and increased the cell numbers in the inner cell mass (ICM) of the exposed blastocyst. Exposure of embryos to oviductal cells from 96 to 120 h post-hCG increased the cell number in the trophectoderm (TE), blastocyst size, hatching rate, attachment, and in vitro spreading of the blastocyst. ETF-1 and ETF-2 affected embryos between 48 and 72 h post-hCG by increasing the number of cells in the ICM. In contrast, ETF-3 had a more profound effect on embryos that were exposed from 96 to 120 h post-hCG, where it mostly affected the development of TE cells, leading to higher hatching rate. Human oviductal cells improved mouse embryo development partly by the production of high molecular weight embryotrophic factors. These factors had differential effects on mouse embryo development.  相似文献   

19.
Time of embryo transport through the mare oviduct   总被引:1,自引:0,他引:1  
The objectives of this study were 1) to determine the time of embryo transport through the mare oviduct, 2) to determine whether equine embryos increase in diameter prior to the time of oviductal transport, and 3) to assess the stage of equine embryonic development at the time of oviductal transport. The time of oviductal transport (interval from ovulation to uterine entry) was estimated by collecting embryos from the mare oviduct or uterus at 2-hour intervals from 120 to 168 h postovulation. The time of oviductal transport was 130 to 142 h, since 9 9 embryos were located in the oviduct from 120 to 128 h; 7 14 embryos were in the oviduct and 7 14 embryos were in the uterus from 130 to 142 h; and 13 14 embryos were in the uterus from 144 to 168 h postovulation. Embryos collected during the period of oviductal transport (130 h to 142 h) were not significantly larger (P>0.1) in diameter than embryos collected prior to the period of oviductal transport (162.5+/-3.7 vs 156.7+/-3.1 mum, respectively). During the period of oviductal transport, embryos collected from the uterus were not significantly larger (P>0.1) in diameter than embryos collected from the oviduct (160.7+/-3.2 vs 164.3+/-7.0 mum, respectively). During this same period 12 14 embryos were compact morulae, and 2 14 embryos were blastocysts.  相似文献   

20.
The reproductive biology of Noctilio albiventris was investigated histologically in 112 females collected at the start of their synchronized breeding season during two different sampling years in the Cauca Valley of Colombia. Both ovaries were functional, but the animals were generally observed to be monovular. Embryonic development in the oviduct was found to proceed to blastocyst formation and loss of the zona pellucida. In 22 animals the discarded zona had been left behind in the oviduct upon passage of the embryo into the uterus and was still undissolved at the time of amniogenesis, the latest stage examined. The zonae which had passed into the uterus with the embryos often exhibited signs of dissolution. Most of the early blastocyts were morphologically distinctive, lacking a typical inner cell mass and being instead largely bilaminar. Degenerating ova from previous ovulations were found in the oviducts of two pregnant bats, suggesting that Noctilio may be another species in which the embryo stimulates its own escape from the oviduct. During tubal passage of the embryo the secretory cells of the oviductal ampulla and isthmus exhibited a transient engorgement with glycogen, particularly on the side ipsilateral to the new corpus luteum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号