首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A temperature-sensitive cell cycle mutant of the BHK cell line   总被引:19,自引:0,他引:19  
A temperature-sensitive growth mutant derived from the BHK 21 cell Line, ts AF8, was found to have greatly reduced DNA synthesis at the nonpermissive temperature. This reduction is mainly due to a decrease in the frequency of cells synthesizing DNA. Upon shift up, ts AF8 becomes blocked in the G1 phase of the cell cycle. The cells acquire elevated cAMP levels and a unimodal distribution of DNA content, equivalent to that of G1 cells at the permissive temperature, Ts AF8 cells blocked at the G1/S boundary with hydroxyurea will enter S when shifted to the nonpermissive temperature. On the other hand, ts AF8 cells arrested m G1 by serum deprivation and shifted to the nonpermissive temperature at the moment of serum addition do not enter S, while those synchronized by isoleucine deprivation and shifted at the time of isoleucine addition will enter S. These data suggest that the cycle arrest point of the ts AF8 mutation is located in G1 between the blocks induced by serum starvation and isoleucine deprivation. The reduction in DNA synthesis caused by the ts AF8 mutation is not reversed by infection or transformation with Polyoma virus. Mitochondrial DNA continues to be synthesized at wild-type levels at the nonpermissive temperature.  相似文献   

2.
Three different temperature sensitive mutants derived from the Syrian hamster cell line BHK 21 were found to have greatly reduced DNA synthesis at the non-permissive temperature. These mutants are distinct by complementation analysis and behave at the non-permissive temperature as cell cycle traverse defective mutants. Microfluorometric analysis of mutant populations arrested at the non-permissive temperature shows an accumulation of cells with G1 DNA content. Mutants ts 13 and ts HJ4 synchronized in G1 by serum or isoleucine deprivation and shifted to the non-permissive temperature at the time of release do not enter the S phase, while in the case of mutant ts 11 preincubation at the non-permissive temperature before release is required to completely prevent its entry into S. Ts 13 and ts 11 are able to traverse the S phase at the non-permissive temperature when synchronized at the boundary G1/S; in this case, preincubation of ts 11 at the non-permissive temperature before release does not affect the ability of these cells to perform DNA synthesis. On the other hand, ts HJ4 appears to traverse S only partially when tested under similar conditions. Temperature shift experiments of mutant populations at different times after isoleucine synchronization suggest that ts 13 and ts 11 are blocked at the non-permissive temperature in early G1, whereas ts HJ4 is probably affected near the initiation of DNA synthesis, or in some early S function.  相似文献   

3.
A temperature-sensitive mutant of BHK, designated is BN-2, shows a rapid drop in 3H-thymidine incorporation along with accumulation of the cells in the G1 phase of the cycle when asynchronous cultures are shifted from 33.5°C to the nonpermissive temperature of 39.5°C. Synchronized cultures of ts BN-2 cells did not enter DNA synthesis when shifted up in G1. Shift-up of cultures at the beginning of the S phase resulted in an approximately normal rate of DNA synthesis for about 2 hr. The rate of DNA synthesis then quickly declined, and the cells became arrested in mid-S after completion of approximately 0.5 rounds of DNA replication. At the same time, the majority of the cells were observed to lose the nuclear membrane and displayed premature chromosome condensation. These events were followed by the appearance of cells containing several micronuclei and eventual cell disruption and death. The nonpermissive temperature appeared to have no effect on either the elongation of short fragments of DNA or the execution of mitosis after the completion of the S phase under permissive conditions. The ts defect in this mutant may directly limit the initiation of DNA synthesis or alter the regulation of chromatin condensation.  相似文献   

4.
Synthesis of mature 28-S ribosomal RNA and 60-S ribosomal subunits is inhibited in baby hamster kidney (BHK) cell line ts 422E at non-permissive temperature (39 degrees C). This leads to a 66% decrease of total ribosomes per cell, a marked imbalance between the large and small ribosomal subunits in the cytoplasm and a decrease of cells per dish after prolonged culture at 30 degrees C. However, inhibition of ribosome synthesis does not affect progression of cells through the G1 period of the cell division cycle, the length of the pre-replicative period, and the rate of entry of cells into S phase. In contrast to culture at non-permissive temperature, culture of BHK ts 422E cells in the presence of 0.04 micrograms/ml actinomycin D at 33 degrees C inhibits markedly the entry into S period. It is concluded that low doses of actinomycin D exert their inhibitory effect on cell growth by preventing maturation and transport of mRNA rather than by interfering with ribosome synthesis. Microfluorometric analysis revealed only slight differences in the distribution of BHK ts 422E cells in G1, S and G2 phases of the cycle either when cultured at 33 degrees C or at 39 degrees C. When too few ribosomes per cell are produced in BHK ts 422E cells at 39 degrees C, cells do not seem to be arrested reversibly at a specific point of the cell cycle but rather to die at random.  相似文献   

5.
Cytoplasmic regulation of two G1-specific temperature-sensitive functions   总被引:4,自引:0,他引:4  
G J Jonak  R Baserga 《Cell》1979,18(1):117-123
tsAF8 and ts13 cells are temperature-sensitive (ts) mutants of BHK cells that specifically arrest, at nonpermissive temperature, in the G1 phase of the cell cycle. These two mutants can complement each other. Both cell lines can be made quiescent by serum deprivation (G0). When subsequently stimulated by serum, they can enter S phase at 34 degrees C but not at 39.5 degrees-40.6 degrees C. We have used these mutants to determine whether the nucleus is needed during the G0 leads to S transition for the expression of the G1 ts functions. For this purpose, we fused cytoplasts of G0-tsAF8 with whole ts13 cells in G0, and cytoplasts of G0-ts13 with whole tsAF8 cells in G0. Serum stimulation at the nonpermissive temperature induced DNA synthesis in both types of such fusion products. No DNA synthesis was induced by serum stimulation at the nonpermissive temperature in fusion products constructed between either G0-tsAF8 cytoplasts and whole G0-tsAF8 cells or G0-ts13 cytoplasts and whole G0-ts13 cells. These results demonstrate that the information for these two ts functions, which are required for entry of serum-stimulated cells into the S phase, are already present in the cytoplasm of G0 cells--that is, before serum stimulation commits them to the transition from the nonproliferating to the proliferating state.  相似文献   

6.
ts 13 cells are a temperature-sensitive (ts) mutant of BHK cells that are known to arrest in G1 when shifted to the nonpermissive temperature. We have determined the entry into S of ts13 cells in five different growth conditions, namely: 1) quiescent, sparse cultures stimulated to proliferate by serum. 2) Quiescent, dense cultures stimulated by serum. 3) Quiescent, sparse cultures stimulated by trypsinization and replating. 4) Quiescent, dense cultures stimulated by trypsinization and replating. 5) Mitotic cells collected by mitotic detachment. For each different growth condition we have also determined the execution point of the mutant function, i.e. the time at which a shift-up to the nonpermissive temperature no longer prevents the entry of cells into S. The median time of entry into S and the execution point varied in different growth conditions, but the distance between the median execution point and the median time of entry into S was remarkably constant, i.e. 3.2 hr. In addition we have fused ts 13 cells cells with chick erythrocytes and studied the ability of ts13 cells in heterokaryon formation to induce DNA synthesis in chick nuclei. Although ts13 cells can induce DNA synthesis in chick nuclei at the permissive temperature, they fail to do so when fused and stimulated at the nonpermissive temperature of 39.5 degrees C.  相似文献   

7.
Four temperature-sensitive mutants of rat 3Y1 fibroblasts belonging to separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) are arrested mainly with a 2C DNA content, when cells proliferating at 33.8 degrees C are shifted up to 39.8 degrees C (Ohno et al., 1984). Zaitsu and Kimura (submitted for publication) showed that 3Y1tsF121 cells synchronized in the early S phase were arrested with a 4C DNA content at 39.8 degrees C. We studied the traverse through the S and G2 phases at 39.8 degrees C in the four ts mutants synchronized at the early S phase and found that 3Y1tsG125 and 3Y1tsH203 cells were arrested with a 4C DNA content as 3Y1tsF121, while 3Y1tsD123 cells went through S and G2 phases and underwent mitosis. When 3Y1tsF121 and 3Y1tsG125 mutants arrested at 39.8 degrees C were shifted down to 33.8 degrees C, a substantial fraction of the cells with a 4C DNA content started, with a certain lag period, DNA synthesis without intervening mitosis and underwent the first mitosis with a lag period similar to that in the cells arrested with a 2C DNA content. The tetraploid cells thus generated had a proliferating ability lower than that of diploid cells.  相似文献   

8.
A large number of mutants that are temperature sensitive (ts) for growth have been isolated from mouse mammary carcinoma FM3A cells by an improved selection method consisting of cell synchronization and short exposures to restrictive temperature. The improved method increased the efficiency of isolating DNA ts mutants, which showed a rapid decrease in DNA-synthesizing ability after temperature shift-up. Sixteen mutants isolated by this and other methods were selected for this study. Flow microfluorometric analysis of these mutants cultured at a nonpermissive temperature (39 degrees C) for 16 h indicated that five clones were arrested in the G1 to S phase of the cell cycle, six clones were in the S to G2 phase, and two clones were arrested in the G2 phase. The remaining three clones exhibited 8C DNA content after incubation at 39 degrees C for 28 h, indicating defects in mitosis or cytokinesis. These mutants were classified into 11 complementation groups. All the mutants except for those arrested in the G2 phase and those exhibiting defects in mitosis or cytokinesis showed a rapid decrease in DNA synthesis after temperature shift-up without a decrease in RNA and protein synthesis. The polyomavirus DNA cell-free replication system, which consists of polyomavirus large tumor antigen and mouse cell extracts, was used for further characterization of these DNA ts mutants. Among these ts mutants, only the tsFT20 strain, which contains heat-labile DNA polymerase alpha, was unable to support the polyomavirus DNA replication. Analysis by DNA fiber autoradiography revealed that DNA chain elongation rates of these DNA ts mutants were not changed and that the initiation of DNA replication at the origin of replicons was impaired in the mutant cells.  相似文献   

9.
E36 ts24 is a temperature-sensitive cell cycle mutant which has been derived from the Chinese hamster lung cell line E36. This mutant is arrested in phase S when incubated at the restrictive temperature (40.3 degrees C) for growth. At this temperature, proliferation of the mutant cells ceases after 10 h. About 2 h earlier, DNA synthesis is arrested. These kinetic studies indicate that the execution point of the mutant cells is in early S phase well beyond the G1/S boundary. The pattern of replication bands in E36 ts24 cell grown for 9 h at 40.3 degrees C strengthen the kinetic studies and map the execution point to early S phase. The exact point of arrest of the mutant cells in phase S was mapped in early S phase near the execution point. At the point of arrest the cells continue to synthesize DNA at at a high rate but practically all of the newly synthesized DNA is degraded. This high rate of DNA degradation is limited to nascent DNA at the point of arrest. In the presence of 5-bromodeoxyuridine (5-BudR), the last E36 ts24 cells which reach mitosis at the restrictive temperature for growth show asymmetric replication bands which illustrate DNA degradation and resynthesis occurring in these cells at 40.3 degrees C.  相似文献   

10.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

11.
A mutant of BHK cells (ts422E) temperature-sensitive for processing 32S rRNA to 28S rRNA (Toniolo et al., '73) also loses the ability to synthesize polyamines and 5.8S rRNA when shifted to the non-permissive temperature (39 degrees). The activity of several enzymes not involved with polyamine synthesis, methylation of 32S rRNA, and small nuclear RNA production are apparently unaffected after at least 24 hours at 39 degrees. When cultures are returned to the permissive temperature (33 degrees), polyamine synthesizing capacity returns to normal as mature rRNA production resumes.  相似文献   

12.
tsJT60 cells are G0-specific temperature-sensitive mutants of the cell cycle from Fischer rats i.e., they grow exponentially at both 34 degrees and 39.5 degrees C, but when stimulated with fetal bovine serum (FBS) from the resting state (G0) they enter S phase at 34 degrees C but not at 39.5 degrees C. Epidermal growth factor (EGF) also induced DNA synthesis, although weakly, in G0-arrested tsJT60 cells at 34 degrees C but failed at 39.5 degrees C. When G0-arrested tsJT60 cells were stimulated at 39.5 degrees C with FBS plus EGF, they entered S phase and divided. Somatomedin C, insulin, or transferrin had a weak effect in inducing DNA synthesis in G0-arrested cells when applied at 34 degrees C or with FBS at 39.5 degrees C. Fibroblast growth factor, platelet-derived growth factor, or 12-O-tetradecanoylphorbol 13-acetate had no such stimulatory effect at 39.5 degrees C. Binding of 125I-somatomedin C was not temperature-sensitive. Several other ts mutant cells that were blocked at 39.5 degrees C from entering S phase from the resting state following FBS addition were stimulated by FBS plus EGF at 34 degrees C but not at 39.5 degrees C.  相似文献   

13.
tsJT16 is a cell cycle temperature-sensitive (ts) mutant from a Fischer rat cell line. When it is growth-stimulated from G0 phase it enters S phase at the permissive temperature (34 degrees C) but not at the nonpermissive temperature (40 degrees C). It induces a nuclear labile protein, p70, when it is stimulated from G0 phase at 34 degrees C, but not at 40 degrees C. In growing cell cycle it progresses through the S, G2 and M phases at both temperatures but fails to pass through G1 phase at 40 degrees C. Here we described that p70 was synthesized neither in the randomly growing cycle nor in the G1 phase synchronously progressing from M phase. The cells synchronized at early G1 phase by culturing in serum-free medium for 7.5 h from G1/S boundary induced c-fos and c-myc following serum addition, but under the same condition p70 was not synthesized. These results indicate that the synthesis of p70 is not required for progression of the G1 phase of the growing cycle and can be used as an exclusive marker of G0-S transition.  相似文献   

14.
R Sheinin  D Mirjah  M Dubsky  J Sigouin 《Biochemistry》1986,25(6):1208-1216
ts 2 BalB/C-3T3 mouse fibroblasts are cdc mutants, which arrest late in G1, at or near the G1/S traverse, upon full expression of the heat-sensitive lesion. The kinetics of temperature inhibition of DNA synthesis in logarithmically growing cultures reveal three stages of heat inactivation. During the first generation time equivalent, normal semiconservative, semidiscontinuous replication proceeds but is reduced as cells exit and do not reenter S phase. During a second such period, a minimal rate of normal DNA synthesis is maintained. Thereafter, as the cells move into a third aborted cell division cycle, the rate of DNA synthesis increases. However, all semiconservative synthesis is then replaced by DNA repair replication. Temperature inactivation of the ts 2 protein results in shutdown of nuclear DNA synthesis. In contrast, normal replication of mitochondrial DNA proceeds at control rate throughout the first stage of temperature inactivation. Synthesis of this organellar genome is quantitatively reduced as the cells move into the second phase of heat inhibition. Titration of chromatin-bound DNA with ethidium bromide revealed that wild-type cells exhibit a changing DNA topology as the temperature is raised. Temperature-inactivated ts 2 cells behave as though their DNA has been topologically frozen in the configuration of control cells at or near entry into S phase.  相似文献   

15.
We have isolated a temperature-sensitive alanyl-tRNA synthetase mutant from hamster BHK21 cells, designated as ts ET12. It has a single nucleotide mutation, converting the 321st amino acid residue, 321Gly, to Arg. The mutation was localized between two RNA-binding domains of alanyl-tRNA synthetase. Thus far, we have isolated two temperature-sensitive aminoacyl-tRNA synthetase mutants from the BHK21 cell line: ts BN250 and ts BN269. They are defective in histidyl- and lysyl-tRNA synthetase respectively. Both mutants rapidly undergo apoptosis at the nonpermissive temperature, 39.5 degrees C. ts ET12 cells, however, did not undergo apoptosis until 48 h after a temperature-shift to 39.5 degrees C, while mutated alanyl-tRNA synthetase of ts ET12 cells was lost within 4 h. Loss of the mutated alanyl-tRNA synthetase was inhibited by a ubiquitin-dependent proteasome inhibitor, MG132, and by a protein-synthesis inhibitor, cycloheximide. Cell-cycle related proteins were also lost in ts ET12 cells at 39.5 degrees C, as shown in ts BN250. In contrast, the mutated aminoacyl-tRNA synthetases of ts BN250 and ts BN269 were stable at 39.5 degrees C. However, the defects of these mutants released EMAPII, an inducer of apoptosis at 39.5 degrees C. No release of EMAPII occurred in ts ET12 cells at 39.5 degrees C, consistent with the delay of apoptosis in these cells.  相似文献   

16.
ts ET24 cells are a novel temperature-sensitive (ts) mutant for cell proliferation of hamster BHK21 cells. The human genomic DNA which rescued the temperature-sensitive lethality of ts ET24 cells was isolated and screened for an open reading frame in the deposited human genomic library. X chromosomal DBX gene encoding the RNA helicase, DEAD-BOX X isoform, which is homologous to yeast Ded1p, was found to be defective in this mutant. The single point mutation (P267S) was localized between the Motifs I and Ia of the hamster DBX of ts ET24 cells. At the nonpermissive temperature of 39.5 degrees C, ts ET24 cells were arrested in the G1-phase and survived for more than 3 days. In ts ET24 cells, total protein synthesis was not reduced at 39.5 degrees C for 24 h, while mRNA accumulated in the nucleus after incubation at 39.5 degrees C for 17 h. The amount of cyclin A mRNA decreased in ts ET24 cells within 4 h after the temperature shift to 39.5 degrees C, consistent with the fact that the entry into the S-phase was delayed by the temperature shift.  相似文献   

17.
Mouse neuroblastoma (N2A) cells react to a heat treatment by inhibition of DNA and protein synthesis and induction of cell cycle progression delay. Mitotic delay of heat-treated G1 cells correlates with reduction of protein synthesis and is due to an extensive delay of entrance into S phase, while the G2 phase of these cells is shortened. Mitotic delay of heat-treated G2 cells is more than in G1 cells and no correlation with protein synthesis reduction is found. In heat-treated G1 phase cells, both protein synthesis and cell cycle progression become thermotolerant to a second incubation at increased temperature. Moreover, the process of DNA synthesis becomes thermotolerant. In contrast, when heat-treated G1 phase cells have progressed into G2 phase and are then incubated at increased temperature, this G2 phase delay is not diminished. Apparently, additional targets for hyperthermia are present in late S and G2 phase cells.  相似文献   

18.
The kinetics of host cellular DNA stimulation by simian virus 40 (SV40) tsA58 infection was studied by flow microfluorometry and autoradiography in two types of productively infected monkey kidney cells (AGMK, secondary passage, and the TC-7 cell line). Prior to infection, the cell populations were maintained predominantly in G0-G1 hase of the cell cycle by low (0.25%) serum concentration. Infection of TC-7 or AGMK cells by wild-type SV40, viable deletion mutant dl890, or by SV40 tsA58 at 33 degrees C induced cells through S phase after which they were blocked with a 4N DNA content in the G2 phase. The infection of TC-7 cells by tsA58 at 41 degrees C, which was a nonpermissive temperature for viral DNA replication, induced a round of cell DNA synthesis in approximately 30% of the cell population. These cells proceeded through S phase but then re-entered the G1 resting state. In contrast, infection of AGMK cells by tsA58 at 41 degrees C induced DNA synthesis in approximately 50% of the cells, but this population remained blocked in the G2 phase. These results indicate that the mitogenic effect of the A gene product upon cellular DNA is more heat resistant than its regulating activity on viral DNA synthesis and that the extent of induction of cell DNA synthesis by the A gene product may be influenced by the host cell.  相似文献   

19.
NRK cells infected with a temperature-sensitive Kirsten sarcoma virus (ts371 KSV) are transformed at 36 degrees C, but are untransformed at 41 degrees C which inactivates the abnormally thermolabile oncogenic p21Ki product of the viral Ki-ras gene. At 41 degrees C, tsKSV-infected NRK cells were arrested in G0/G1 when incubated in serum-free medium, but could then be stimulated to transit G1, replicate DNA, and divide by adding serum at 41 degrees C or dropping the temperature to a p21-activating 36 degrees C without adding serum. When quiescent cells at 41 degrees C were stimulated to transit G1 in serum-free medium by activating p21 at 36 degrees C and then shifted back to the p21-inactivating 41 degrees C in the mid-S phase, they continued replicating DNA but could not transit G2. Reactivating p21 in the G2-arrested cells by once again lowering the temperature to 36 degrees C stimulated a rapid entry into mitosis. By contrast, while serum-stimulated quiescent G0 cells at 41 degrees C replicate DNA and divide, serum did not induce G2-arrested cells to enter mitosis, indicating that serum growth factors may trigger events in the G1 phase that ultimately determine G2 transit. These observations made with the viral ras product suggest that cellular ras proto-oncogene products have a role in G2 transit of normal cells.  相似文献   

20.
Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号