首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J R Tata 《Biochimie》1999,81(4):359-366
The thyroid hormones L-thyroxine and triiodo-L-thyronine have profound effects on postembryonic development of most vertebrates. Analysis of their action in mammals is vitiated by the exposure of the developing foetus to a number of maternal factors which do not allow one to specifically define the role of thyroid hormone (TH) or that of other hormones and factors that modulate its action. Amphibian metamorphosis is obligatorily dependent on TH which can initiate all the diverse physiological manifestations of this postembryonic developmental process (morphogenesis, cell death, re-structuring, etc.) in free-living embryos and larvae of most anurans. This article will first describe the salient features of metamorphosis and its control by TH and other hormones. Emphasis will be laid on the key role played by TH receptor (TR), in particular the phenomenon of TR gene autoinduction, in initiating the developmental action of TH. Finally, it will be argued that the findings on the control of amphibian metamorphosis enhance our understanding of the regulation of postembryonic development by TH in other vertebrate species.  相似文献   

2.
Amphibian metamorphosis   总被引:1,自引:0,他引:1  
  相似文献   

3.
Metamorphosis in invertebrates and vertebrates is an ideal model for studying mechanisms of postembryonic development regulated by external signals. Amphibian metamorphosis shares many similarities with mammalian development in the perinatal period. The precocious induction in vivo and in culture of amphibian metamorphosis by exogenous thyroid hormones and its retardation or inhibition by prolactin, have allowed the analysis of such characteristic features of postembryonic development as morphogenesis, tissue remodelling, gene reprogramming and programmed cell death. Recent studies on metamorphosis have revealed the important role played by such processes as auto- and cross-regulation of hormone receptor genes and by cell death or apoptosis, as in the maturation of the central nervous system, tissue restructuring and organolysis.  相似文献   

4.
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/ NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-l/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are express  相似文献   

5.
During amphibian metamorphosis, the animal body dramatically remodels to adapt from the aquatic to the terrestrial life. Cell death of larval organs/tissues occurs massively in balance with proliferation of adult organs/tissues, to ensure survival of the individuals. Thus, amphibian metamorphosis provides a unique and valuable opportunity to study regulatory mechanisms of cell death. The advantage of this animal model is the absolute dependence of amphibian metamorphosis on thyroid hormone (TH). Since the 1990s, a number of TH response genes have been identified in several organs of Xenopus laevis tadpoles such as the tail and the intestine by subtractive hybridization and more recently by cDNA microarrays. Their expression and functional analyses, which are still ongoing, have shed light on molecular mechanisms of TH‐induced cell death during amphibian metamorphosis. In this review, I survey the recent progress of research in this field, focusing on the X. laevis intestine where apoptotic process is well characterized at the cellular level and can be easily manipulated in vitro. A growing body of evidence indicates that apoptosis during the intestinal remodeling occurs not only via a cell‐autonomous pathway but also via cell–cell and/or cell–extracellular matrix (ECM) interactions. Especially, stromelysin‐3, a matrix metalloproteinase, has been shown to alter cell–ECM interactions by cleaving a laminin receptor and induce apoptosis in the larval intestinal epithelium. Here, I emphasize the importance of TH‐induced multiple apoptotic pathways for massive and well‐organized apoptosis in the amphibian organs and discuss their conservation in the mammalian organs.  相似文献   

6.
7.
Two distinct cDNAs encoding thyroid hormone receptors (THRs) were cloned from a λ gtl0 library prepared from the whole bodies of metamorphosing flounder larvae (Paralichfhys olivaceus). Deduced amino acid sequences of the two isolated cDNAs shared 96% and 92% homologies in their DNA- and hormone-binding domains, respectively. These were highly conserved when compared to THRs for other vertebrates: 88–96% in the DNA-binding domain and 84–94% in the hormone-binding domain. Other receptors in the nuclear receptor family showed lower homologies than those of THRs. Both THRs for the flounder had higher homologies with the α-type THRs of other vertebrates than with the β-type. Thus, the two THRs for flounder were designated as fTHRαA and fTHRαB. © 1994 Wiiey-Liss, Inc.  相似文献   

8.
Summary We have developed an organ culture system of the anuran small intestine to reproduce in vitro the transition from larval to adult epithelial form which occurs during spontaneous metamorphosis. Tubular fragments isolated from the small intestine ofXenopus laevis tadpoles were slit open and placed on membrane filters in culture dishes. In 60% Leibovitz 15 medium supplemented with 10% charcoal-treated serum, the explants were maintained in good condition for at least 10 days without any morphologic changes. Addition of triiodothyronine (T3) at a concentration higher than 10−9 M to the medium could induce cell death of larval epithelial cells, but T3 alone was not sufficient for proliferation and differentiation of adult epithelial cells. When insulin (5 μg/ml) and cortisol (0.5 μg/ml) besides T3 were added, the adult cells proliferated and differentiated just as during spontaneous metamorphosis. On Day 5 of cultivation, the adult cells rapidly proliferated to form typical islets, whereas the larval ones rapidly degenerated. At the same time, the connective tissue beneath the epithelium suddenly increased in cell density. These changes correspond to those occurring at the onset of metamorphic climax. By Day 10, the adult cells differentiated into a simple columnar epithelium which possessed the brush border and showed the adult-type lectin-binding pattern. Therefore, the larval epithelium of the small intestine responded to the hormones and transformed into the adult one. This organ culture system may be useful for clarifying the mechanism of the epithelial transition from larval to adult type during metamorphosis.  相似文献   

9.

Background

Thyroid hormone acts via receptor subtypes (TRα1, TRβ1, TRβ2) with differing tissue distributions, encoded by distinct genes (THRA, THRB). THRB mutations cause a disorder with central (hypothalamic–pituitary) resistance to thyroid hormone action with markedly elevated thyroid hormone and normal TSH levels.

Scope of review

This review describes the clinical features, genetic and molecular pathogenesis of a homologous human disorder mediated by defective THRA. Clinical features include growth retardation, skeletal dysplasia and constipation associated with low-normal T4 and high-normal T3 levels and a low T4/T3 ratio, together with subnormal reverse T3 levels. Heterozygous TRa1 mutations in affected individuals generate defective mutant receptors which inhibit wild-type receptor action in a dominant negative manner.

Major conclusions

Mutations in human TRα1 mediate RTH with features of hypothyroidism in particular tissues (e.g. skeleton, gastrointestinal tract), but are not associated with a markedly dysregulated pituitary–thyroid axis.

General significance

Human THRA mutations could be more common but may have eluded discovery due to the absence of overt thyroid dysfunction. Nevertheless, in the appropriate clinical context, a thyroid biochemical signature (low T4/T3 ratio, subnormal reverse T3 levels), may enable future identification of cases.This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

10.
甲状腺激素在两栖动物变态过程中的作用   总被引:1,自引:0,他引:1  
两栖动物的幼体变态是研究甲状腺激素调节组织和器官重构的理想模式。本文主要综述了近年来两栖动物甲状腺激素合成过程中3种脱碘酶D1、D2和D3的特点及其生物学功能;甲状腺激素受体的蛋白结构、类型和机能;以及甲状腺激素对两栖动物幼体变态过程中各个类型组织和器官重构的调节;甲状腺激素、甲状腺激素受体和脱碘酶的互作,并展望了今后的研究方向。  相似文献   

11.
Selective modulation of thyroid hormone receptor action   总被引:3,自引:0,他引:3  
Thyroid hormones have some actions that might be useful therapeutically, but others that are deleterious. Potential therapeutically useful actions include those to induce weight loss and lower plasma cholesterol levels. Potential deleterious actions are those on the heart to induce tachycardia and arrhythmia, on bone to decrease mineral density, and on muscle to induce wasting. There have been successes in selectively modulating the actions of other classes of hormones through various means, including the use of pharmaceuticals that have enhanced affinities for certain receptor isoforms. Thus, there is reason to pursue selective modulation of thyroid hormone receptor (TR) function, and several agents have been shown to have some β-selective, hepatic selective and/or cardiac sparring activities, although development of these was largely not based on detailed understanding of mechanisms for the specificity. The possibility of selectively targeting the TRβ was suggested by the findings that there are - and β-TR forms and that the TR-forms may preferentially regulate the heart rate, whereas many other actions of these hormones are mediated by the TRβ. We determined X-ray crystal structures of the TR and TRβ ligand-binding domains (LBDs) complexed with the thyroid hormone analog 3,5,3′-triiodithyroacetic acid (Triac). The data suggested that a single amino acid difference in the ligand-binding cavities of the two receptors could affect hydrogen bonding in the receptor region, where the ligand's 1-position substituent fits and might be exploited to generate β-selective ligands. The compound GC-1, with oxoacetate in the 1-position instead of acetate as in Triac, exhibited TRβ-selective binding and actions in cultured cells. An X-ray crystal structure of the GC-1-TRβ LBD complex suggests that the oxoacetate does participate in a network of hydrogen bonding in the TR LBD polar pocket. GC-1 displayed actions in tadpoles that were TRβ-selective. When administered to mice, GC-1 was as effective in lowering plasma cholesterol levels as T3, and was more effective than T3 in lowering plasma triglyceride levels. At these doses, GC-1 did not increase the heart rate. GC-1 was also less active than T3 in modulating activities of several other cardiac parameters, and especially a cardiac pacemaker channel such as HCN-2, which may participate in regulation of the heart rate. GC-1 showed intermediate activity in suppressing plasma thyroid stimulating hormone (TSH) levels. The tissue/plasma ratio for GC-1 in heart was also less than for the liver. These data suggest that compounds can be generated that are TR-selective and that compounds with this property and/or that exhibit selective uptake, might have clinical utility as selective TR modulators.  相似文献   

12.
13.
The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.  相似文献   

14.
During metamorphosis, the Rana catesbeiana tadpole undergoes developmental changes in almost every tissue/organ. These changes prepare the ammonotelic, swimming larva for its transition to a ureotelic, terrestrial adult, and involve dramatic remodeling. The postembryonic changes in this tadpole are initiated by the thyroid hormones (TH) and result in the extensive degradation of proteins and degeneration of tissues characteristic of the larval phenotype and in the de novo synthesis of proteins characteristic of the adult phenotype. We questioned whether the drastic nature and abruptness of the TH-dependent, postembryonic changes occurring in the tissues of this tadpole might be perceived by the cells in some tissues as stressful and, therefore, cause them to express heat shock and/or stress-like proteins. To address this question, we isolated and characterized a Rana catesbeiana hsp30 gene and used sequences from it to determine if mRNAs encoded from it, or other members of this gene family, are expressed in tissues of tadpoles undergoing metamorphosis. Our results demonstrate that the liver of metamorphosing Rana catesbeiana tadpoles accumulate hsp30 mRNAs and express the heat shock proteins they encode. The fact that the expression of these hsp30s in the liver of these tadpoles is coincidental with the TH-induced expression of genes encoding the liver-specific urea cycle enzymes suggests that TH may influence, directly or indirectly, the expression of these hsp30 genes and, moreover, implies that the presence of one or more of these heat shock proteins may be necessary for the developmental transitions occurring in this organ. © 1996 Wiley-Liss, Inc.  相似文献   

15.
It is desirable to obtain TR antagonists for treatment of hyperthyroidism and other conditions. We have designed TR antagonists from first principles based on TR crystal structures. Since agonist ligands are buried in the fold of the TR ligand binding domain (LBD), we reasoned that ligands that resemble agonists with large extensions should bind the LBD, but would prevent its folding into an active conformation. In particular, we predicted that extensions at the 5′ aryl position of ligand should reposition helix (H) 12, which forms part of the co-activator binding surface, and thereby inhibit TR activity. We have found that some synthetic ligands with 5′ aryl ring extensions behave as antagonists (DIBRT, NH-3), or partial antagonists (GC-14, NH-4). Moreover, one compound (NH-3) represents the first potent TR antagonist with nanomolar affinity that also inhibits TR action in an animal model. However, the properties of the ligands also reveal unexpected aspects of TR behavior. While nuclear receptor antagonists generally promote binding of co-repressors, NH-3 blocks co-activator binding and also prevents co-repressor binding. More surprisingly, many compounds with extensions behave as full or partial agonists. We present hypotheses to explain both behaviors in terms of dynamic equilibrium of H12 position.  相似文献   

16.
During amphibian metamorphosis the digestive tract is extensively remodeled under the control of epithelial-connective tissue interactions. At the cellular level, larval epithelial cells undergo apoptosis, while a small number of stem cells appear, actively proliferate, and then differentiate to form adult epithelium that is analogous to its mammalian counterpart. Therefore the amphibian digestive tract is a unique model system for the study of postembryonic organ regeneration. As amphibian intestinal remodeling can be triggered by thyroid hormone (TH), the molecular mechanisms involved can be studied from the perspective of examining the expression cascade of TH response genes. A number of these genes have been isolated from the intestine of Xenopus laevis. Recent progress in the functional analysis of this cascade has shed light on key molecules in intestinal remodeling such as matrix metalloproteinase-11, sonic hedgehog, and bone morphogenetic protein-4. These genes are also thought to play key roles in organogenesis and/or homeostasis in both chick and mammalian digestive tract, suggesting the existence of conserved mechanisms underlying such events in terrestrial vertebrates. In this article, we review our recent findings in this field, focusing on the development of adult epithelium in the X. laevis intestine.  相似文献   

17.
During both spontaneous and thyroid hormone (TH)-induced metamorphosis, the Rana catesbeiana tadpole undergoes postembryonic developmental changes in its liver which are necessary for its transition from an ammonotelic larva to a ureotelic adult. Although this transition ultimately results from marked increases in the activities and/or de novo synthesis of the urea cycle enzymes, the precise molecular means by which TH exerts this tissue-specific response are presently unknown. Recent reports, using RNA from whole Xenopus laevis tadpole homogenates and indirect means of measuring TH receptor (TR) mRNAs, suggest a correlation between the up-regulation of TRβ-mRNAs and the general morphological changes occurring during amphibian metamorphosis. To assess whether or not this same relationship exists in a TH-responsive tissue, such as liver, we isolated and characterized a cDNA clone containing the complete nucleotide sequence for a R. catesbeiana urea cycle enzyme, ornithine transcarbamylase (OTC), as well as a genomic clone containing a portion of the hormone-binding domain of a R. catesbeiana TRβ gene. Through use of these homologous sequences and a heterologous cDNA fragment encoding rat carbamyl phosphate synthetase (CPS), we directly determined the relative levels of the TRβ, OTC, and CPS mRNAs in liver from spontaneous and TH-induced tadpoles. Our results establish that TH affects an up-regulation of mRNAs for its own receptor prior to up-regulating CPS and OTC mRNAs. Moreover, results with cultured tadpole liver demonstrate that TH, in the absence of any other hormonal influence, can affect an up-regulation of both the TRβ and OTC mRNAs. © 1992 Wiley-Liss, Inc.  相似文献   

18.
19.
20.
At the end of premetamorphosis, summer flounder Paralichthys dentatus larvae had 84·1% whole-body water content (WBW), which decreased to the lowest levels (8·5%) at the start of metamorphic climax (MC). During mid- and late MC, %WBW was slightly higher (82·1%) then returned to the lowest levels at the juvenile stage. In fish treated with thyroxine (T4-Na salt, 100 ng ml−1) beginning at premetamophosis, %WBW never differed from controls of the same age throughout metamorphosis, despite an earlier start of metamorphic climax and transitional settling behaviour. This suggests that thyroid hormones do not mediate the drop in %WBW which accompanies natural metamorphosis. Thiourea (TU, 30 μg ml−1) treatment of fish over the same period induced a developmental stasis in early MC which was accompanied by initially higher %WBW than controls at 33 days post-hatch, followed by a progressive decrease to abnormally low %WBW by 42 and 45 days post-hatch. Since concurrent treatment with TU+T4 rescued the fish from both the TU-induced developmental stasis and abnormally low %WBW, these findings suggest that thyroid hormones, or thyroid hormone-mediated developmental progression, are necessary for regulating %WBW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号