首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tumor necrosis factor-alpha (TNF-alpha) is a pleiotropic cytokine with a proposed role in obesity-related insulin resistance. This could be mediated by increased lipolysis in adipose tissue resulting in elevated free fatty acid levels. The early intracellular signals entailed in TNF-alpha-mediated lipolysis are unknown but may involve members of the mitogen-activated protein kinase (MAPK) family. We investigated the possible contribution of MAPK in TNF-alpha-induced lipolysis in human preadipocytes. TNF-alpha activated the three mammalian MAPK, p44/42, JNK, and p38, in a distinct time- and concentration-dependent manner. TNF-alpha also induced a concentration-dependent stimulation of lipolysis with a more than 3-fold increase at the maximal dose. Lipolysis was completely inhibited by blockers specific for p44/42 (PD98059) and JNK (dimetylaminopurine) but was not affected by the p38 blocker SB203580. Use of receptor-specific TNF-alpha mutants showed that activation of MAPK is entirely mediated by the TNFR1 receptor. The results in human preadipocytes differed from those obtained in murine 3T3-L1 adipocytes in which all three MAPK were constitutively active. Thus, studies of intracellular signaling pathways obtained in different cellular contexts should be interpreted with caution. In conclusion, although TNF-alpha activates all three known MAPK in human preadipocytes, only p44/42 and JNK appear to be involved in the regulation of lipolysis.  相似文献   

2.
Transgenic (TG) mice with cardiac-specific overexpression of tumor necrosis factor-alpha develop congestive heart failure with myocardial inflammation. The purpose of this study was to investigate the effects of tumor necrosis factor-alpha on reactive oxygen species (ROS) in this mouse model of cardiomyopathy. Myocardial production of hydroxyl radical detected by electron spin resonance spectroscopy was significantly increased in TG. Myocardial expression of Mn-SOD was significantly decreased in TG, whereas that of Cu,Zn-SOD was unaltered. Myocardial expression of catalase was unchanged, whereas that of glutathione peroxidase was significantly increased, in TG. Histological analysis revealed that macrophages and CD4-positive lymphocytes were increased in TG myocardium. To investigate whether these infiltrating inflammatory cells were the source of ROS, we treated TG mice with cyclophosphamide for 7 days. Although cyclophosphamide significantly suppressed the infiltration of inflammatory cells, it did not diminish the production of hydroxyl radical in TG myocardium. Damaged myocytes, but not infiltrating inflammatory cells, may be the source of ROS in TG.  相似文献   

3.
The molecular action of tumor necrosis factor-alpha.   总被引:20,自引:0,他引:20  
Tumor necrosis factor-alpha (TNF-alpha) is a polypeptide hormone newly synthesized by different cell types upon stimulation with endotoxin, inflammatory mediators (C5a anaphylatoxin), or cytokines such as interleukin-1 and, in an autocrine manner, TNF itself. The net biological effect of TNF-alpha may vary depending on relative concentration, duration of cell exposure and presence of other mediators which may act in synergism with this cytokine. TNF-alpha may be relevant either in pathological events occurring in cachexia and endotoxic shock and inflammation or in beneficial processes such as host defense, immunity and tissue homeostasis. The biological effects of TNF-alpha are triggered by the binding to specific cell surface receptors. The formation of TNF-alpha-receptor complex activates a variety of biochemical pathways that include the transduction of the signal at least in part controlled by guanine-nucleotide-binding regulatory proteins (G proteins), its amplification through activation of adenyl cyclase, phospholipases and protein kinases with the generation of second messenger pathways. The transduction of selected genes in different cell types determines the characteristics of the cell response to TNF-alpha. The full understanding of the molecular mechanisms of TNF-alpha will provide the basis for a pharmacological approach intended to inhibit or potentiate selected biological actions of this cytokine.  相似文献   

4.
Several species of mycoplasmas including M. pneumoniae, the causative agent of human respiratory infection, were investigated for tumor necrosis factor-alpha (TNF-alpha) induction. The cytotoxic activity to Meth A cells of peritoneal macrophages purified from BALB/c mice was enhanced markedly when cultured with either viable or nonviable mycoplasmas. The supernatant of macrophage culture mixed with mycoplasmas, M. pneumoniae or A. laidlawii, showed a potent cytotoxic activity to TNF-alpha-sensitive but not to TNA-alpha-insensitive L cells. Addition of anti-TNA-alpha antiserum inhibited completely the cytotoxic activity of the supernatant, indicating that the cytotoxic activity is due mostly to TNF-alpha. These results strongly suggest that mycoplasmas possess an activity to induce TNF-alpha, which enhances the cytotoxic activity of macrophages and prevent infection with mycoplasmas in vivo.  相似文献   

5.
Excessive mineralocorticoid receptor (MR) stimulation induces neurohumoral excitation and cardiac and vascular fibrosis. In heart failure (HF) rats, with excessive neurohumoral drive, central infusion of the MR antagonist spironolactone (SL) decreases blood-borne TNF-alpha. This study aimed to determine whether DOCA, a precursor of aldosterone, acts centrally to stimulate TNF-alpha production in normal rats. DOCA (5 mg sc daily for 8 days) induced a progressive increase in TNF-alpha beginning on day 3 and increased tissue TNF-alpha in hypothalamus, pituitary, and heart but not in other brain and peripheral tissues harvested on day 9. A continuous intracerebroventricular infusion of SL (100 ng/h) blocked the plasma TNF-alpha response. Oral SL (1 mg/kg) blocked the plasma and tissue TNF-alpha responses. Thus DOCA increases TNF-alpha in brain, heart, and blood in normal rats. Activation of brain MR appears to account for the increase in plasma TNF-alpha. These findings have important implications for the understanding of pathophysiological states (e.g., HF, hypertension) characterized by high circulating levels of aldosterone.  相似文献   

6.
We studied the testicular macrophages of rats with experimental autoimmune orchitis (EAO) and analyzed whether the tumor necrosis factor-alpha (TNFalpha) is involved in germ cell apoptosis and in Leydig cell steroidogenesis. The EAO was induced in adult male Sprague-Dawley rats by active immunization with testicular homogenate and adjuvants. In the experimental group, a severe orchitis was observed 80 days after the first immunization. ED1- and ED2-positive macrophages were quantified by immunohistochemistry. The TNFalpha concentration of conditioned media from testicular macrophages (TMCM) was determined by ELISA. The number of apoptotic TNF receptor 1 (TNFR1)-positive germ cells was identified by combining in situ end labeling of apoptotic DNA and immunohistochemical techniques. The effect of TNFalpha on Leydig cell testosterone production was determined by RIA. In rats with EAO, we observed a significant increase in the number of TNFalpha-positive testicular macrophages, the TNFalpha concentration in TMCM, and the number of TNFR1-positive germ cells. Sixty percent of TNFR1-positive germ cells were apoptotic. These results suggest that TNFalpha could be involved in the pathogenesis of EAO. Acting together with other local factors such as Fas-FasL, TNFalpha could trigger germ cell apoptosis. We also demonstrated that TNFalpha inhibited in vitro testosterone production in basal and hCG-stimulated Leydig cells from rats with orchitis.  相似文献   

7.
Recombinant human tumor necrosis factor-alpha (rHuTNF) was injected into rats to test its reported cachectic effects. Rats were subcutaneously injected daily at 1730 hr with either saline or rHuTNF (0.25 mg/kg body wt) for either 5 or 14 days. Daily food intakes were significantly depressed only for the first day and first two days of rHuTNF injection in animals treated for 5 days and 14 days, respectively. There were no significant differences in daily body weights among the groups. Analysis of carcass composition revealed no significant differences in percentage of lipid or protein. Liver and inguinal pad weights were not significantly different. In vitro determination of lipogenesis showed it was enhanced in the inguinal pad and depressed in the liver only after 14 days of treatment. These results demonstrate that although in vivo rHuTNF may specifically alter tissue metabolism, it does not, by itself, result in a sustained cachectic effect.  相似文献   

8.
9.
Brain microglia are a major source of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), which have been implicated in the progression of neurodegenerative diseases. Recently, microglia were revealed to be highly responsive to ATP, which is released from nerve terminals, activated immune cells, or damaged cells. It is not clear, however, whether released ATP can regulate TNF-alpha secretion from microglia. Here we demonstrate that ATP potently stimulates TNF-alpha release, resulting from TNF-alpha mRNA expression in rat cultured brain microglia. The TNF-alpha release was maximally elicited by 1 mM ATP and also induced by a P2X(7) receptor-selective agonist, 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, suggesting the involvement of P2X(7) receptor. ATP-induced TNF-alpha release was Ca(2+)-dependent, and a sustained Ca(2+) influx correlated with the TNF-alpha release in ATP-stimulated microglia. ATP-induced TNF-alpha release was inhibited by PD 098059, an inhibitor of extracellular signal-regulated protein kinase (ERK) kinase 1 (MEK1), which activates ERK, and also by SB 203580, an inhibitor of p38 mitogen-activated protein kinase. ATP rapidly activated both ERK and p38 even in the absence of extracellular Ca(2+). These results indicate that extracellular ATP triggers TNF-alpha release in rat microglia via a P2 receptor, likely to be the P2X(7) subtype, by a mechanism that is dependent on both the sustained Ca(2+) influx and ERK/p38 cascade, regulated independently of Ca(2+) influx.  相似文献   

10.
Macrophage responses to recombinant IFN-gamma decline during aging, as measured by two criteria of macrophage activation, O2- and TNF-alpha secretion. The production of O2- by macrophages in response to opsonized-zymosan and recombinant rat IFN-gamma is 75% lower in 23-month-old rats than in 3-month-old rats. Furthermore, the secretion of TNF-alpha in response to IFN-gamma and LPS is almost absent in macrophages from aged rats. Production of both O2- and TNF-alpha by resident peritoneal macrophages from specific pathogen-free aged rats in response to priming and triggering stimuli was partially or fully restored by implantation of syngeneic pituitary grafts from young rats. These data demonstrate that macrophages from aged rats are defective in their response to a priming signal induced by IFN-gamma, and they suggest that impaired macrophage responses during aging may be reversible.  相似文献   

11.
Chronic hypoxia and inflammatory cytokines are hallmarks of inflammatory joint diseases like rheumatoid arthritis (RA), suggesting a link between this microenvironment and central pathological events. Because TACE/ADAM17 is the predominant protease catalyzing the release of tumor necrosis factor alpha (TNFalpha), a cytokine that triggers a cascade of events leading to RA, we examined the regulation of this metalloprotease in response to hypoxia and TNFalpha itself. We report that low oxygen concentrations and TNFalpha enhance TACE mRNA levels in synovial cells through direct binding of hypoxia-inducible factor-1 (HIF-1) to the 5' promoter region. This is associated with elevated TACE activity as shown by the increase in TNFalpha shedding rate. By the use of HIF-1-deficient cells and by obliterating NF-kappaB activation, it was determined that the hypoxic TACE response is mediated by HIF-1 signaling, whereas the regulation by TNFalpha also requires NF-kappaB activation. As a support for the in vivo relevance of the HIF-1 axis for TACE regulation, immunohistological analysis of TACE and HIF-1 expression in RA synovium indicates that TACE is up-regulated in both fibroblast- and macrophage-like synovial cells where it localizes with elevated expression of both HIF-1 and TNFalpha. These findings suggest a mechanism by which TACE is increased in RA-affected joints. They also provide novel mechanistic clues on the influence of the hypoxic and inflammatory microenvironment on joint diseases.  相似文献   

12.
13.
The cytokine tumor necrosis factor-alpha (TNF alpha) is one of the major mediators of septic shock. Because vasodilation is a hallmark of sepsis and decreased vascular responsiveness has been implicated in the pathogenesis of septic shock, we studied the effect of TNF alpha on the mean blood pressure in conscious rats and vascular responsiveness to vasoconstrictors ex vivo using the standard organ bath method. Intravenous infusion of TNF alpha (0.006 or 0.06 mg/kg/hr for 10 hours) decreased mean blood pressure in a dose-dependent fashion. Contractile responses to norepinephrine were depressed dose-dependently in the aortic rings both with and without its endothelium. Aortic contractions by potassium depolarization were also depressed. These results suggest that TNF alpha induces non-specific vascular hyporesponsiveness, which is independent of the presence of the endothelium. The TNF alpha-induced vascular hyporesponsiveness might contribute to the hypotensive action of TNF alpha.  相似文献   

14.
Glucose and tumor necrosis factor-alpha (TNFalpha) concentrations are elevated in diabetes. Both of these factors correlate with diabetic vasculopathy and endothelial cell apoptosis, yet their combined effects have not been measured. We have previously shown that the angiogenic growth factor fibroblast growth factor-2 (FGF-2), which is generally protective against endothelial cell death, is similarly elevated in high glucose conditions. We therefore investigated the effect of TNFalpha on endothelial cell death under normal and elevated glucose conditions, with a particular focus on FGF-2. Porcine aortic endothelial cells were cultured in 5 and 30 mM glucose and stimulated with TNFalpha, together with FGF-2 or a neutralizing FGF-2 antibody. Cell death was measured via cell counts or an annexin apoptotic assay, and cell cycle phase was determined by propidium iodide labeling. TNFalpha-induced endothelial cell death increased for cells in high glucose, and cell death was enhanced with increasing FGF-2 exposure and negated by a neutralizing FGF-2 antibody. Endothelial cells were most susceptible to TNFalpha-induced cell death when stimulated with FGF-2 18 h prior to TNFalpha, corresponding to cell entry into S phase of the proliferative cycle. The FGF-2 associated increase in TNFalpha-induced cell death was negated by blocking cell entry into S phase. Endothelial cell release of FGF-2 in high glucose leads to cell cycle progression, which makes cells more susceptible to TNFalpha-induced cell death. These data suggest that growth factor outcomes in high glucose depend on secondary mediators such as cytokines and stimulation cell cycle timing.  相似文献   

15.
The thick ascending limb of Henle's loop (TAL) is capable of metabolizing arachidonic acid (AA) by cytochrome P450 (CYP450) and cyclooxygenase (COX) pathways and has been identified as a nephron segment that contributes to salt-sensitive hypertension. Previous studies demonstrated a prominent role for CYP450-dependent metabolism of AA to products that inhibited ion transport pathways in the TAL. However, COX-2 is constitutively expressed along all segments of the TAL and is increased in response to diverse stimuli. The ability of Tamm-Horsfall glycoprotein, a selective marker of cortical TAL (cTAL) and medullary (mTAL), to bind TNF and localize it to this nephron segment prompted studies to determine the capacity of mTAL cells to produce TNF and determine its effects on mTAL function. The colocalization of calcium-sensing receptor (CaR) and COX-2 in the TAL supports the notion that activation of CaR induces TNF-dependent COX-2 expression and PGE? synthesis in mTAL cells. Additional studies showed that TNF produced by mTAL cells inhibits ??Rb uptake, an in vitro correlate of natriuresis, in an autocrine- and COX-2-dependent manner. The molecular mechanism for these effects likely includes inhibition of Na?-K?-2Cl? cotransporter (NKCC2) expression and trafficking.  相似文献   

16.
Tumor necrosis factor alpha (TNF-alpha) exerts multiple actions on endothelial cells including among others the expression of pro-coagulant activity and adhesion molecules, and secretion of cytokines. We now show that TNF-alpha induces a time- and dose-dependent cytotoxic effect on cultured bovine aortic endothelial cells. This TNF-induced cytotoxicity, which is preceded by increased production of nitric oxide (NO), is significantly decreased by the NO synthase inhibitor N-iminoethyl-L-ornithine (L-NIO). Dexamethasone, which prevents the expression of cytokine-induced NO synthase in endothelial cells, also inhibits TNF-alpha-dependent cytotoxicity. The results indicate that NO is involved in the cytotoxic effect of TNF-alpha on endothelial cells.  相似文献   

17.

Background and Aims

The innate immune cells can not normally respond to the pathogen in patients with decompensated cirrhosis. Previous studies reported that antigen-presenting cells take up L-Cystine (L-Cys) and secrete substantial amounts of L-Glutamate (L-Glu) via the transport system Xc- (4F2hc+xCT), and that this exchange influences the immune responses. The aim of this study is to investigate the influence of the plasma L-Cys/L-Glu imbalance observed in patients with advanced cirrhosis on the function of circulating monocytes.

Methods

We used a serum-free culture medium consistent with the average concentrations of plasma amino acids from patients with advanced cirrhosis (ACM), and examined the function of CD14+ monocytes or THP-1 under ACM that contained 0–300 nmol/mL L-Cys with LPS. In patients with advanced cirrhosis, we actually determined the TNF-alpha and xCT mRNA of monocytes, and evaluated the correlation between the plasma L-Cys/L-Glu ratio and TNF-alpha.

Results

The addition of L-Cys significantly increased the production of TNF alpha from monocytes under ACM. Monocytes with LPS and THP-1 expressed xCT and a high level of extracellular L-Cys enhanced L-Cys/L-Glu antiport, and the intracellular GSH/GSSG ratio was decreased. The L-Cys transport was inhibited by excess L-Glu. In patients with advanced cirrhosis (n = 19), the TNF-alpha and xCT mRNA of monocytes were increased according to the Child-Pugh grade. The TNF-alpha mRNA of monocytes was significantly higher in the high L-Cys/L-Glu ratio group than in the low ratio group, and the plasma TNF-alpha was significantly correlated with the L-Cys/L-Glu ratio.

Conclusions

A plasma L-Cys/L-Glu imbalance, which appears in patients with advanced cirrhosis, increased the TNF-alpha from circulating monocytes via increasing the intracellular oxidative stress. These results may reflect the immune abnormality that appears in patients with decompensated cirrhosis.  相似文献   

18.
Tumor necrosis factor-alpha (TNFalpha) promotes oxidation of branched-chain amino acids (BCAA). BCAA catabolism is regulated by branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which is regulated by phosphorylation-dephosphorylation of the E1alpha subunit at Ser293. BCKDH kinase is responsible for inactivation of the complex by phosphorylation. In the present study, we examined the effects of TNFalpha administration on hepatic BCKDH complex and kinase in rats. Rats were intravenously administered with 25 or 50 microg TNFalpha/kg body weight 4 h prior to sacrifice. The TNFalpha treatment at both doses elevated the activity state (percentage of the active form) of BCKDH complex from 22% to 69% and 86%, respectively, and the amount of phospho-Ser293 on the E1alpha subunit in each group of rats corresponded inversely to the activity state of BCKDH complex. The TNFalpha treatment of rats significantly decreased the activity as well as the bound form of BCKDH kinase. These results suggest that the decrease in the bound form of kinase is involved in the mechanism responsible for TNFalpha-induced activation of the BCKDH complex.  相似文献   

19.
Borst SE  Bagby GJ 《Cytokine》2004,26(5):217-222
Overexpression of mRNA for tumor necrosis factor-alpha (TNF-alpha) has been observed in adipose tissue in several rodent models of insulin resistance. The purpose of the present study was to examine the expression of TNF-alpha protein during the onset of insulin resistance in maturing Sprague-Dawley (S-D) rats. Compared to 2 months, rats aged 5 and 12 months were glucose intolerant and fasting glucose was elevated at 12 months (p < 0.05). Compared to 2 months, insulin concentrations following glucose loading were elevated at 5 months (p < 0.05) and also at 12 months, but to a lesser degree. In isolated strips of soleus muscle, insulin-stimulated glucose transport was reduced by 38% and 59% between 2 and 5 months and between 2 and 12 months, respectively (p < 0.05), with no changes in basal transport. Insulin resistance was associated with decreased content of TNF-alpha protein in visceral and subcutaneous fat. TNF-alpha protein content was also decreased in tibialis anterior muscle, but was unchanged in soleus and red gastrocnemius muscles. Liver was the only tissue examined that showed an increase in TNF-alpha protein content. In vitro secretion of TNF-alpha protein was markedly reduced in explants of visceral and subcutaneous fat from mature, insulin-resistant animals, but TNF-alpha bioactivity in subcutaneous fat was maintained with age. These results indicate that the onset of insulin resistance in mature S-D rats is associated with reduced adipose expression of TNF-alpha. Our findings do not support the adipose-endocrine model of TNF-alpha in insulin resistance. Our findings do support a paracrine role for TNF-alpha or for a reduction in endogenous TNF-alpha inhibitors in insulin resistance.  相似文献   

20.
Tumor necrosis factor-alpha (TNF) has been reported to increase DNA synthesis in normal rat liver. Therefore, we examined the effects of TNF on rat liver regeneration. TNF, 1.5 micrograms ip every 4 h for 5 d, significantly increased hepatic DNA and RNA contents of regenerating and sham operated livers by up to 45%. Mitotic figures in sham operated liver, usually rare, were increased substantially by TNF. ODC mRNA content and enzyme activity were increased in regenerating liver, and were further increased by TNF. These data indicate that TNF, although not specific for regenerating liver, is a potent stimulus for hepatocyte DNA synthesis and mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号