首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of Ca2+ in stimulation of H+ gastric secretion by cAMP-dependent and -independent secretagogues was studied in isolated rabbit glands using Ca2+ ionophore, A23187, and an intracellular Ca2+ chelator (BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) incorporated as its acetoxymethyl ester (BAPTA-AM). Acetylcholine (ACh), tetragastrin (TG), histamine and forskolin induced a transitory increase of intracellular Ca2+ concentration, [Ca2+]i, measured in gastric glands loaded with Ca2+-sensitive dye fura-2, and provoked an acid secretory response evaluated with aminopyrine accumulation ratio (AP ratio). The Ca2+-ionophore A23187 also induced an increase in [Ca2+]i and in AP ratio. cAMP-dependent secretagogues were more potent stimulants of acid secretion than cAMP-independent secretagogues. cAMP analogue, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BR-cAMP) induced an increase in AP ratio without modifying [Ca2+]i. BAPTA-AM (5-25 microM) induced a transient decrease of resting [Ca2+]i which returned to basal level due to extracellular Ca2+ entry. Increases in [Ca2+]i produced by ACh and TG were abolished by BAPTA and those produced by Ca2+ ionophore A23187 were partially buffered. BAPTA inhibited in a dose-dependent manner H+ secretion induced by cholinergic and gastrinergic stimulants in the presence of cimetidine. A23187 increased the AP ratio to values similar to those obtained with ACh or TG and was not inhibited by BAPTA. BAPTA partially inhibited (40%) the increase in AP ratio induced by forskolin and histamine inspite of the complete inhibition of the Ca2+ response. BAPTA did not inhibit the response to 8-BR-cAMP. BAPTA inhibition of forskolin stimulation was reversed by A23187 and the response was potentiated. These results indicate that ACh and TG response are completely dependent on an increase of [Ca2+]i. The response to cAMP-dependent agonists histamine and forskolin depend both on Ca2+ and cAMP. For forskolin stimulation the response may be the result of a potentiation between Ca2+ and cAMP.  相似文献   

2.
The plant lectin, concanavalin A (Con-A), and the ionophore, A-23187 (specific for divalent cations), stimulated glucose transport in rat thymocytes. Con-A stimulation developed more slowly and was somewhat less extensive than that of stimulation developed more slowly and was somewhat less extensive than that of A-23187. Both responses showed saturation dose dependencies. The two responses were poorly additive, suggesting that A-23187 may saturate regulatory processes shared by the two stimulatory mechanisms. Doses of methylisobutylxanthine (MIX) and prostaglandin E2 which raised adenosine 3':5'-monophosphate (cAMP) levels in these cells also antagonized the Con-A stimulation of glucose transport but did not inhibit basal glucose transport or the A-23187 stimulation. Dibutyryl-cAMP and 8-bromo-cAMP also natagonized Con-A stimulation without inhibiting basal glucose transport. MIX antagonized high Con-A doses about as strongly as it did low Con-A doses, suggesting that MIX did not compete in the Con-A binding step or other process saturable by Con-A. [3H-A1Con-A binding was not affected by MIX. The stimulatory effects of Con-A and A-23187 were reduced by reduction of Ca++ in the medium. Both Con-A and A-23187 enhanced 45Ca++ influx and cellular Ca++ content. The A-23187 dose, which was saturating for glucose transport stimulation, enhanced Ca++ influx and cellular Ca++ content more than did the Con-A dose which was saturating for glucose transport stimulation. The dose fo MIX which specifically antagonized Con-A stimulation of glucose transport proved also to reduce Ca++ influx and cellular Ca++ in the presence of Con-A but not in the presence of A-23187. Thus, glucose transport correlates rather well with cellular Ca++. These results are compatible with the view that Ca++ in a cellular compartment can promote glucose transport, the Con-A's enhancement of Ca++ entry contributes to its stimulation of glucose transport, and the MIX antagonized Con-A action at least partly by reducing Ca++ entry. The action of MIX is apparently mediated by cAMP.  相似文献   

3.
The Ca++ requirement for in vitro lymphocyte stimulation by lectins is well known and can be demonstrated by the use of Ca++ chelators. In this study, three Ca++ antagonists were examined for their effects on lymphocyte proliferation. [3H]-thymidine incorporation was employed to measure DNA synthesis in several systems. Stimulation and proliferation were achieved by the addition of one of the following: the mitogenic lectin concanavalin A (ConA); the combination of two co-mitogens, the calcium ionophore A23187 and the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA), neither of which is mitogenic alone; or the non-mitogenic lectin, wheat germ agglutinin (WGA) with TPA. These mitogenic systems were tested for their sensitivity to the Ca++ channel blockers verapamil and nicardipine and the intracellular Ca++ antagonist TMB-8. We found that the ConA and WGA plus TPA treated cells were inhibited approximately 50% by 10 microM verapamil, nicardipine or TMB-8. The stimulation caused by A23187 and TPA was only inhibited by TMB-8 and nicardipine. The inhibitory effects caused by the Ca++ antagonists could not be reversed by the addition of exogenous Ca++ (0.1-1.5 mM), but were reversed by repeated washings in antagonist free media. Using TMB-8 we saw an apparent intracellular Ca++ dependence throughout the G1 phase. Previous studies using Ca++ chelators or Ca++ antagonists suggested an endpoint at about halfway through this period.  相似文献   

4.
Calcium-specific ionophores are used widely to stimulate Ca2+-dependent secretion from cells on the assumption that permeabilization of the cell membranes to Ca2+ ions leads to a rise in concentration of cytosolic Ca2+ ([Ca2+]i), which in turn serves as a signal for secretion. In this way, events that precede mobilization of Ca2+ ions via receptor stimulation are bypassed. One such event is thought to be the rapid hydrolysis of membrane inositol phospholipids to form inositol phosphates and diacylglycerol. Accordingly, rat leukemic basophil (2H3) cells can be stimulated to secrete histamine either with the ionophores or by aggregation of receptors for IgE in the plasma membrane. We find, however, that ionophore A23187 stimulates secretion of histamine only at concentrations (200-1000 nM) that stimulate hydrolysis of membrane inositol phospholipids. The extent of hydrolysis of inositol phospholipids was dependent on the concentration of ionophore and the presence of external Ca2+ ions and correlated with the magnitude of the secretory response. A similar correlation between secretion and hydrolysis of inositol phospholipids was observed in response to the Ca2+-specific ionophore, ionomycin. Although this hydrolysis (possibly a consequence of elevated [Ca2+]i) was less extensive than that induced by aggregation of receptors, it may govern the secretory response to A23187. The studies revealed one paradox. The rise in [Ca2+]i depended on intracellular ATP levels, when either an ionophore or antigen was used as a stimulant irrespective of whether hydrolysis of inositol phospholipids was stimulated or not. The concept of how the ionophores act, therefore, requires critical reevaluation.  相似文献   

5.
Rat thymocytes incorporate large amounts of acridine orange at concentrations of approximately 10 microM in about 10 minutes at 37 degrees C. The addition of (NH4)2SO4 (at a final concentration of several mMolars) releases about 30% of the incorporated dye into the medium. The NH4+-releasable dye uptake is almost completely abolished by 20 minutes' incubation with 4 microM of the Ca++-ionophore A23187. Dye uptake is associated with an absorbance change at 492 mm and thus may be followed spectrophotometrically. However, NH4+ at the above concentrations or nigericin (0.5 mg/ml) completely annul this change in absorbance, indicating that it reflects only the accumulation of the dye within the acidic cellular compartments. In a Ca++-containing physiological saline, the addition of A23187 (at a final concentration of 8 microM) at the end of the dye uptake phase initiated a reversal in the absorbance change; in the absence of Ca++, reversal occurred at a much lower rate. Incubation of cells for 30 minutes with 2 microM A23187 in Ca++-containing saline completely abolished NH4+-sensitive dye uptake; less A23187 (0.5 microM) and like or a longer incubation period brought about a striking decrease in NH4+-sensitive dye uptake. Similar results were obtained with cells suspended in RPLM 1640 medium. In the absence of external Ca++, A23187 impaired cell capacity to incorporate dye in a delta pH-dependent manner, but a longer incubation time or higher concentrations of the ionophore were required to obtain a comparable effect. It is thus concluded that the ionophore dissipates intracellular pH gradients by an intracellular divalent cation (Ca++ or also Mg++)-H+ exchange.  相似文献   

6.
The pathways for cytosolic Ca++ increase under A23187 stimulation of H+ secretion were studied in the isolated gastric mucosa of the toad Bufo marinus. A23187 produced a more potent stimulation of secretion when added to the mucosal side which did not contain calcium. Measurements of ionophore incorporation by fluorometric methods indicated that A23187 incorporates into oxyntic cells intracellularly. The presence of divalent cations inhibited incorporation. This may be the reason for a more potent action when A23187 was added from the mucosal side. With-drawal of calcium from serosal solution largely inhibited the secretory response to A23187 added to the mucosal side. Reintroduction of calcium into the serosal side in the presence of ionophore elicited H+ secretion. The results are consistent with an uptake of A23187 from the mucosal side into cellular organelles and basolateral membranes. Calcium entry through the serosal side may be responsible for triggering secretion. Although A23187 likely releases calcium from intracellular stores, its rate of release may not be sufficient to bring about a full stimulation of secretion in serosal-Ca++-free conditions.  相似文献   

7.
The effect of the transport ATPase inhibitor, quercetin on histamine secretion from antigen sensitized mast cells was examined. At micromolar concentrations, quercetin had an immediate inhibitory effect on histamine secretion mediated by antigen, concanavalin A and ATP but it had little effect on release induced by the ionophores A23187 and X537A. Quercetin exerts its effect after the binding of the releasing ligands and the distinction between its effect on ligand induced and A23187 induced secretion suggests that it affects the normal path of Ca2+ entry into the cell. The inhibitory effects of quercetin were compared with those of the structurally related anti-allergic drugs cromoglycate and AH7725.  相似文献   

8.
We evaluated changes in cytosolic calcium concentration (Ca++) and steroidogenesis in rat adrenal glomerulosa cells (GC) stimulated with potassium (K+) or angiotensin II (AII). Cytosolic Ca++ concentration was determined using the Ca++-sensitive, fluorescent dye QUIN 2. Raising extracellular K+ increased cytosolic Ca++ from 267 +/- 23 nM at 3.7 mM K+ to a maximum of 377 +/- 40 nM at 8.7 mM K+ (p less than 0.01, N = 23). AII also increased cytosolic Ca++ from 238 +/- 20 nM to a maximum of 427 +/- 42 nM at 10(-7) M (p less than 0.01, N = 16). In parallel studies, K+ and AII stimulated aldosterone secretion from QUIN 2-loaded GC at concentrations similar to those which raised cytosolic Ca++. QUIN 2-loaded cells were as responsive steroidogenically as unloaded cells and showed trypan blue exclusion of 98% suggesting that QUIN 2 did not compromise cellular viability. These results provide direct support for a role of cytosolic Ca++ as a second messenger during stimulation of aldosterone secretion by both K+ and AII.  相似文献   

9.
The digitalic glicoside ouabain induces potentiation of rat mast cell histamine release in response to several stimuli, which is mediated by Na+/Ca2+ exchanger. In this work, we studied the effect of ouabain on cytosolic calcium, intracellular pH and histamine release with Ca2+ ionophore A23187 in conditions designed to maximize ouabain-induced potentiation of rat mast cells response. The effect of protein kinase C (PKC), cAMP and phosphatase inhibition was also tested. Ouabain induced an enhancement in histamine release, cytosolic calcium and intracellular pH. The adenylate cyclase activator forskolin reduced the effect of ouabain on histamine release and intracellular pH, but enhanced the effect on cytosolic calcium. PKC activator PMA enhanced the effect of ouabain on histamine release and cytosolic calcium, without affecting intracellular pH. A PKC inhibitor, GF-109203X, reduced ouabain-induced enhancement of histamine release and intracellular pH, but increased the enhancement on cytosolic calcium. Finally, inhibition of protein phosphatases 1 and 2A with okadaic acid, increased the effect of ouabain on histamine release and intracellular pH, but reduced cytosolic calcium in presence of ouabain. This result suggest that ouabain-induced potentiation of rat mast cell histamine release with A23187 is modulated by kinases, and this modulation may be carried out by changes in intracellular alkalinization. However, the mechanism underlying cellular alkalinization remains to be elucidated.  相似文献   

10.
Glucagon and prostaglandin E1 stimulate adenylate cyclase in Madin-Darby canine kidney cells with an approximate EC50 of 3*10(-8) and 1*10(-7) M respectively. The rise in cAMP is accompanied by a transient rise in intracellular Ca++ measured with the fluorescent calcium indicator Indo-1. A comparable increase in intracellular Ca2+ without a rise in cAMP occurs with the cholinergic agonist carbamylcholine. Stimulation of adenylate cyclase by the beta-adrenergic agonist isoproterenol or directly by forskolin has no effect on intracellular Ca++. By all criteria studied the rise in intracellular Ca++ and the increase in cAMP are independent from each other.  相似文献   

11.
Spermatozoa undergo exocytosis in response to agonists that induce Ca2+ influx and, in turn, activation of phosphoinositidase C, phospholipase C, phospholipase A2, and cAMP formation. Since the role of cAMP downstream of Ca2+ influx is unknown, this study investigated whether cAMP modulates phospholipase C or phospholipase A2 using a ram sperm model stimulated with A23187 and Ca2+. Exposure to dibutyryl-cAMP, phosphodiesterase inhibitors or forskolin resulted in enhancement of exocytosis. However, the effect was not due to stimulation of phospholipase C or phospholipase A2: in spermatozoa prelabelled with [3H]palmitic acid or [14C]arachidonic acid, these reagents did not enhance [3H]diacylglycerol formation or [14C]arachidonic acid release. Spermatozoa were treated with the phospholipase A2 inhibitor aristolochic acid, and dibutyryl-cAMP to test whether cAMP acts downstream of phospholipase A2. Under these conditions, exocytosis did not occur in response to A23187 and Ca2+. However, inclusion of dibutyryl-cAMP and the phospholipase A2 metabolite lysophosphatidylcholine did result in exocytosis (at an extent similar to that seen when cells were treated with A23187/Ca2+ and without the inhibitor). Inclusion of lysophosphatidylcholine alone, without dibutyryl-cAMP, enhanced exocytosis to a lesser extent, demonstrating that cAMP requires a phospholipase A2 metabolite to stimulate the final stages of exocytosis. These results indicate that cAMP may act downstream of phospholipase A2, exerting a regulatory role in the exocytosis triggered by physiological agonists.  相似文献   

12.
The divalent cation ionophore, A23187, at a concentration of 0.25 microgram/ml, enhanced influx of Ca2+, activity of ornithine decarboxylase and incorporation of [3H]thymidine into DNA of guinea pig lymphocytes. Combined treatment of cells with A23187 and dibutyryladenosine 3',5'-monophosphate (Bt2cAMP) augmented these three events. A23187 at a concentration of 0.06 microgram/ml was insufficient for induction of ornithine decarboxylase stimulated neither Ca2+ influx nor [3H]thymidine incorporation, but stimulated Ca2+ efflux. A23187 (0.06 microgram/ml) in combination with Bt2cAMP caused a marked induction of ornithine decarboxylase and stimulation of [3H]thymidine incorporation into DNA. When the time of Bt2cAMP addition was delayed after A23187, the stimulation of ornithine decarboxylase activity decreased. Washout of Bt2cAMP from cell culture earlier than 4 h of incubation caused a reduction in the stimulatory effect of Bt2cAMP. These results suggest that raising concentrations of cytoplasmic Ca2+ and cellular cAMP are important to some initial events leading to induction of ornithine decarboxylase and these biochemical changes are obligatory sequential steps for stimulation of DNA synthesis.  相似文献   

13.
We have shown that a Ca++-ionophore activity is present in the (Ca++ +Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A. E. Shamoo & D. H. MacLennan, 1974. Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca++ +Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential -SH groups. However, it appears that there are no essential -SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential -SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

14.
The involvement of extracellular free Ca2+ in histamine release was investigated in rat peritoneal mast cells. Incubation of non-antigenized cells in a media with high extracellular potassium did not increase histamine release. Secretion induced by A23187 and compound 48/80 in the presence of Ca2+ requires metabolic energy. In the absence of external free Ca2+ (2.5 microM) histamine release induced by A23187 is reduced but not abolished. Secretion induced by compound 48/80 is independent of extracellular Ca2+. These results lead us to suggest that mast cell plasma membranes probably lack voltage-gated Ca2+ channels and that external Ca2+ may not be an absolute requisite for histamine secretion.  相似文献   

15.
The effects of Ca++ ionophore A23187 on H+ secretion and histamine release were studied in the isolated gastric mucosa of the toad . A23187 added from the mucosal side stimulated H+ secretion. At high concentrations, A23187 also caused histamine release. This histamine was not sufficient to explain the effects of A23187 on H+ secretion. Metiamide, only partially inhibited the effect of ionophore. There was summation and/or potentiation of effects between A23187 and histamine. The results are consistent with the hypothesis that Ca++ acts as a second messenger in stimulus-secretion coupling in the oxyntic cell. It is possible that Ca++ and cAMP may interact as parallel second messengers in the control of gastric H+ secretion.  相似文献   

16.
The purified calmodulin dependent (Ca2+ + Mg2+)-ATPase (CaMg ATPase) from porcine antral smooth muscle transports Ca2+ after reconstitution in lipid vesicles indicating that this enzyme is indeed a Ca2+-transport ATPase. For CaMg ATPase reconstituted in asolectin vesicles a good correlation was found between the time course of Ca2+ accumulation and the corresponding changes in CaMg ATPase activity. The ATPase activity was stimulated 8-fold by A23187, which further indicates a tight coupling between ATP hydrolysis and Ca2+ transport. Asolectin vesicles with incorporated enzyme accumulated Ca2+ with a ratio approaching one Ca2+ ion transported for each ATP hydrolyzed. For CaMg ATPase reconstituted in phosphatidylcholine vesicles on the other hand, Ca2+ transport and CaMg ATPase were poorly coupled as is shown by the approximately 3.5 fold stimulation by A23187. The activity of the CaMg ATPase when reconstituted in asolectin vesicles was stimulated 1.25 fold by calmodulin while in phosphatidylcholine a value of 4.25 was obtained. The CaMg ATPase activity of the enzyme reconstituted either in asolectin or phosphatidylcholine was, after its stimulation by A23187, still further stimulated by detergent by a factor of 5.  相似文献   

17.
Beta adrenergic agonists, tetradecanoylphorbol acetate, and the ionophore A23187 all stimulate surfactant secretion in type II cells isolated from rats. We found that combinations of these agonists cause augmented secretion, suggesting that the agonists may effect different steps in the secretory process. Previous studies have shown that cAMP is likely to be an intracellular 'second messenger' in type II cells. A23187, which has been reported to increase cAMP in some cell systems, did not increase the cAMP content of type II cells. We investigated the possible role of Ca2+ as another 'second messenger' by studying cellular 45Ca fluxes and the effect of extracellular calcium depletion on secretion. Depletion of extracellular calcium for as long as 3 h did not alter stimulated secretion, although basal secretion was increased. Secretagogues did not stimulate 45Ca influx from extracellular sources. A23187 and, to a lesser extent, terbutaline caused an acceleration of 45Ca efflux from type II cells. The addition of terbutaline or tetradecanoylphorbol acetate to A23187 further accelerated 45Ca efflux, suggesting that these agonists may act on separate calcium pools or by different mechanisms on the same calcium pool. Although secretion from type II cells is not inhibited by extracellular calcium depletion, the studies on 45Ca efflux suggest that Ca2+ plays a role in the regulation of surfactant secretion from isolated type II cells.  相似文献   

18.
A general mechanism for the physiological regulation of the activity of voltage-dependent Na+, Ca++, K+, and Cl channels by neurotransmitters in a variety of excitable cell types may involve a final common pathway of a cyclic AMP-dependent phosphorylation of the channel protein. The functional correlates of channel phosphorylation are known to involve a change in the probability of opening, and a negative or positive shift in the voltage dependence for activation of the conductance. The voltage dependence for activation appears to be governed by the properties of the charge movement of the voltage-sensing moiety of the channel. This study of the gating charge movement of cardiac Ca++ channels has revealed that isoproterenol or cAMP (via a presumed phosphorylation of the channel) speeds the kinetics of the Ca++ channel gating charge movement. These results suggest that the changes in the kinetics and voltage dependence of the cardiac calcium currents produced by beta-adrenergic stimulation are initiated, in part, by parallel changes in the gating charge movement.  相似文献   

19.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

20.
The 1,4-dihydropyridines (DHP) are calcium antagonists and represent a new class of drugs which act by a selective inhibition of Ca++ influx through voltage-operated calcium channels. We report the effect of nifedipine (Bay A 1040), nisoldipine (Bay K 5552) and nitrendipine (Bay E 5009) on the histamine release and on the 45Ca uptake promoted by 4-aminopyridin in mast cells. These cells treated with DHP (10(-12)-10(-3) M) activated the secretory response in a dose-dependent manner in the range of concentrations 10(-6)-10(-3) M, whereas concentrations of 10(-12)-10(-6) M did not significantly inhibit the secretion. 4-Aminopyridin, a known K+ -channel blocker, induced 45Ca uptake. Pretreatment of mast cells with DHP prior to 4-aminopyridin stimulation inhibited or stimulated 45Ca uptake depending on concentration; thus, concentrations of DHP below 10(-12) of nitrendipine and 10(-9) for nisoldipine and nifedipine were inhibitory, while higher doses potentiated 45Ca uptake. These results demonstrate a diversity of pharmacological effects of DHP on mediator secretion and 45Ca uptake in mast cells and throw into question their only properties as Ca++ antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号