首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Three rumen anaerobic fungi—Neocallinastix frontalis MCH3,Piromyces (Piromonas) communis FL, andCaecomyces (Sphaeromonas) communis FG10—were cultured on cellulose filter paper alone or in association with one of two rumen cellulolytic bacteria,Ruminococcus flavefaciens 007 andFibrobacter succinogenes S85. Cocultures ofN. frontalis orP. communis andR. flavefaciens were markedly less effective than the fungal monocultures in degrading cellulose but more effective than the bacterial monocultures.R. flavefaciens had an antagonistic effect against both of the fungal species. In contrast, no interaction was observed between the two fungal species andF. succinogenes. Cellulose was more effectively degraded by the cocultureC. communis-R. flavefaciens than by the corresponding fungal and bacterial monocultures. The effectiveness of degradation of the cocultureC. communis-F. succinogenes was comparable to that of the bacterial strains but greater than that of the fungi; no interaction was observed between these two microorganisms.  相似文献   

2.
The phylum Neocallimastigomycota contains eight genera (about 20 species) of strictly anaerobic fungi. The evolutionary relationships of these genera are uncertain due to insufficient sequence data to infer their phylogenies. Based on morphology and molecular phylogeny, thirteen isolates obtained from yak faeces and rumen digesta in China were assigned to Neocallimastix frontalis (nine isolates), Orpinomyces joyonii (two isolates) and Caecomyces sp. (two isolates), respectively. The phylogenetic relationships of the eight genera were evaluated using complete ITS and partial LSU sequences, compared to the ITS1 region which has been widely used in this phylum in the past. Five monophyletic lineages corresponding to six of the eight genera were statistically supported. Isolates of Caecomyces and Cyllamyces were present in a single lineage and could not be separated properly. Members of Neocallimastigomycota with uniflagellate zoospores represented by Piromyces were polyphyletic. The Piromyces-like genus Oontomyces was consistently closely related to the traditional Anaeromyces, and separated the latter genus into two clades. The phylogenetic position of the Piromyces-like genus Buwchfawromyces remained unresolved. Orpinomyces and Neocallimastix, sharing polyflagellate zoospores, were supported as sister genera in the LSU phylogeny. Apparently ITS, specifically ITS1 alone, is not a good marker to resolve the generic affinities of the studied fungi. The LSU sequences are easier to align and appear to work well to resolve generic relationships. This study provides a comparative phylogenetic revision of Neocallimastigomycota isolates known from culture and sequence data.  相似文献   

3.
Aims: To compare the abilities of the monocentric rumen fungi Neocallimastix frontalis, Piromyces communis and Caecomyces communis, growing in coculture with Methanobrevibacter smithii, to colonize and degrade lignified secondary cell walls of lucerne (alfalfa) hay. Methods and Results: The cell walls of xylem cylinders isolated from stems of lucerne contained mostly xylans, cellulose and lignin together with a small proportion of pectic polysaccharides. All of these major components were removed during incubation with the three fungi, and differing cell wall polysaccharides were degraded to different extents. The greatest dry weight loss was found with N. frontalis and least with C. communis, and scanning electron microscopy revealed that these extensively colonized different cell types. C. communis specifically colonized secondary xylem fibres and showed much less degradation than N. frontalis and P. communis. Conclusions: Neocallimastix frontalis and P. communis were efficient degraders of the cell walls of lucerne xylem cylinders. Degradation occurred of pectic polysaccharides, xylan and cellulose. Loss of lignin from the xylem cylinders probably resulted from the cleavage of xylan releasing xylan–lignin complexes. Significance and Impact of the Study: Unlike rumen bacteria, the rumen fungi N. frontalis, P. communis and C. communis are able to degrade lignified secondary walls in lucerne stems. These fungi could improve forage utilization by ruminants and may have potential in the degradation of lignocellulosic biomass in the production of biofuels.  相似文献   

4.
Aims: Determine the susceptibility of forage chicory (Cichorium intybus L.) to degradation by ruminal fibrolytic bacteria and measure the effects on cell-wall pectic polysaccharides. Methods and Results: Large segments of fresh forage chicory were degraded in vitro by Lachnospira multiparus and Fibrobacter succinogenes, but not by Ruminococcus flavefaciens or Butyrivibrio hungatei. Cell-wall pectins were degraded extensively (95%) and rapidly by L. multiparus with a simultaneous release of uronic acids and the pectin-derived neutral monosaccharides arabinose, galactose and rhamnose. Fibrobacter succinogenes also degraded cell-wall pectins extensively, but at a slower rate than L. multiparus. Immunofluorescence microscopy using monoclonal antibodies revealed that, after incubation, homogalacturonans with both low and high degrees of methyl esterification were almost completely lost from walls of all cell types and from the middle lamella between cells. Conclusions: Only two of the four ruminal bacteria with pectinolytic activity degraded fresh chicory leaves, and each showed a different pattern of pectin breakdown. Degradation was greatest for F. succinogenes which also had cellulolytic activity. Significance and Impact of the Study: The finding of extensive removal of pectic polysaccharides from the middle lamella and the consequent decrease in particle size may explain the decreased rumination and the increased intake observed in ruminants grazing forage chicory.  相似文献   

5.
Pure cultures of ruminal bacteria characterized as using only a single forage polysaccharide (Fibrobacter succinogenes A3c, cellulolytic; Bacteroides ruminicola H2b, hemicellulolytic; Lachnospira multiparus D15d, pectinolytic) were inoculated separately and in all possible combinations into fermentation tubes containing orchard grass as the sole substrate. Fermentations were run to completion, and then cultures were analyzed for digestion of cellulose plus degradation and utilization of hemicellulose and pectin. Addition of the noncellulolytic organisms, in any combination, to the cellulolytic organism F. succinogenes had little effect on overall cellulose utilization. F. succinogenes degraded but could not utilize hemicellulose; however, when it was combined with B. ruminicola, total utilization of hemicellulose increased markedly over that by B. ruminicola alone. L. multiparus was inactive in hemicellulose digestion, alone or in any combination. Although unable to degrade and utilize purified pectin, B. ruminicola degraded and utilized considerable quantities of the forage pectin. In contrast, L. multiparus was very active against purified pectin, but had extremely limited ability to degrade and utilize pectin from the intact forage. Both degradation and utilization of forage pectin increased when F. succinogenes was combined with B. ruminicola. Sequential addition of two cultures, allowing one to complete its fermentation before adding the second, was used to study synergism between cultures on forage pectin digestion. In general, synergistic effects did not appear to be related to a particular sequence of utilization. The ability of F. succinogenes to degrade and B. ruminicola to degrade and utilize forage pectin contradicts both previous and present data obtained with purified pectin. Thus, isolation and characterization of ruminal bacteria on purified substrates may be misleading with regard to their role in the overall ruminal fermentation.  相似文献   

6.
The diversity of anaerobic fungi was evaluated in cow semiliquid manure obtained from input homogenizing tank of biogas plant. Among three sets of tested primers, the combination of fungal universal ITS1F and Neocallimastigales specific Neo QPCR Rev primers was selected and used for the construction of clone library. Eighty-four new complete internal transcribed spacers (ITS1) and partial 5.8S rDNA sequences generated within this study were analyzed by Bayesian inference and assigned to an existing order of the Neocallimastigales. Sixty-seven % of sequences were affiliated with Cyllamyces, 24 % with Piromyces, 7 % with Anaeromyces, only 2 % with Neocallimastix, and no sequences with Orpinomyces. According to Bayesian analysis the genus Caecomyces was polyphyletic and disappeared from the presented ITSbased phylogram. This study gave a first insight into the diversity of anaerobic fungi in cow manure, where the prevalence of fungi with bulbous morphology was indicated.  相似文献   

7.
To visualize and localize specific bacteria associated with plant materials, a new fluorescence in situ hybridization (FISH) protocol was established. By using this protocol, we successfully minimized the autofluorescence of orchard grass hay and detected rumen bacteria attached to the hay under a fluorescence microscope. Real-time PCR assays were also employed to quantitatively monitor the representative fibrolytic species Fibrobacter succinogenes and Ruminococcus flavefaciens and also total bacteria attached to the hay. F. succinogenes was found firmly attached to not only the cut edges but also undamaged inner surfaces of the hay. Cells of phylogenetic group 1 of F. succinogenes were detected on many stem and leaf sheath fragments of the hay, even on fragments on which few other bacteria were seen. Cells of phylogenetic group 2 of F. succinogenes were often detected on hay fragments coexisting with many other bacteria. On the basis of 16S rRNA gene copy number analysis, the numbers of bacteria attached to the leaf sheaths were higher than those attached to the stems (P < 0.05). In addition, R. flavefaciens had a greater tendency than F. succinogenes to be found on the leaf sheath (P < 0.01) with formation of many pits. F. succinogenes, particularly phylogenetic group 1, is suggested to possibly play an important role in fiber digestion, because it is clearly detectable by FISH and is the bacterium with the largest population size in the less easily degradable hay stem.  相似文献   

8.
Summary Fungi borne on or in ryegrass (Lolium spp.) seeds or invading ryegrass seedlings grown on field soils were isolated and identified. Selected isolates were tested to determine their pathogenicity to ryegrass seedlings. Seed-borne fungi were generally weakly virulent or non-pathogenic to ryegrass seedlings. Pathogenic seed-borne fungi includedChaetomium globosum Kunze: Fr.,Curvularia trifolii (Kauffm.) Boedijn, and species ofPenicillium Link andAspergillus Mich. ex Link. Species of fungi isolated from seedlings grown on field soils de pended on soil and temperature. Soil-borne fungi pathogenic to seedlings includedFusarium avenaceum (Fr.) Sacc.,F. culmorum (W. G. Smith) Sacc.,F. equiseti (Corda) Sacc.,F. oxysporum Schlecht.: Fr.,F. solani (Mart.) Sacc.,Pythium afertile Kanouse and Humphrey,P. debaryanum auct. non Hesse,P. irregulare Buisman,P. ultimum Trow, a sphaerosporangiatePythium sp.,Chaetomium globosum, Thanatephorus cucumeris (Frank) Donk,Trichoderma koningii Oudem., and aPhomopsis sp. Individual isolates of fungi differed in virulence to ryegrass seedlings, and ryegrass cultivars differed in susceptibility to seedling pathogens.  相似文献   

9.
The effect of glycerol on the growth, adhesion, and cellulolytic activity of two rumen cellulolytic bacterial species,Ruminococcus flavefaciens andFibrobacter succinogenes subsp.succinogenes, and of an anaerobic fungal species,Neocallimastix frontalis, was studied. At low concentrations (0.1–1%), glycerol had no effect on the growth, adhesion, and cellulolytic activity of the two bacterial species. However, at a concentration of 5%, it greatly inhibited their growth and cellulolytic activity. Glycerol did not affect the adhesion of bacteria to cellulose. The growth and cellulolytic activity ofN. frontalis were inhibited by glycerol, increasingly so at higher concentrations. At a concentration of 5%, glycerol totally inhibited the cellulolytic activity of the fungus. Thus, glycerol can be added to animal feed at low concentrations.  相似文献   

10.
The genomic cleavage map of the type strain Fibrobacter succinogenes S85 was constructed. The restriction enzymes AscI, AvrII, FseI, NotI, and SfiI generated DNA fragments of suitable size distribution that could be resolved by pulsed-field gel electrophoresis (PFGE). An average genome size of 3.6 Mb was obtained by summing the total fragment sizes. The linkages between the 15 AscI fragments of the genome were determined by combining two approaches: isolation of linking clones and cross-hybridization of restriction fragments. The genome of F. succinogenes was found to be represented by the single circular DNA molecule. Southern hybridization with specific probes allowed the eight genetic markers to be located on the restriction map. The genome of this bacterium contains at least three rRNA operons. PFGE of the other three strains of F. succinogenes gave estimated genome sizes close to that of the type strain. However, RFLP patterns of these strains generated by AscI digestion are completely different. Pairwise comparison of the genomic fragment distribution between the type strain and the three isolates showed a similarity level in the region of 14.3% to 31.3%. No fragment common to all of these F. succinogenes strains could be detected by PFGE. A marked degree of genomic heterogeneity among members of this species makes genomic RFLP a highly discriminatory and useful molecular typing tool for population studies. Received: 23 October 1996 / Accepted: 31 December 1996  相似文献   

11.
Sheep fed the forage Digitaria pentzii fertilized with sulfur were compared with those fed unfertilized forage for the rumen microbial population involved with fiber degradation. No differences were detected in the bacterial population as determined by anaerobic cultures on a habitat-simulating medium, xylan, or pectin, by 35S labeling techniques for microbial protein, or by transmission electron microscopic studies of bacterium-fiber interactions. Rumen volume and water flow from the rumen were not different for sheep fed each of the forages. Rumen fungi were prevalent in sheep fed sulfur-fertilized D. pentzii as shown by sporangia adhering to forage fiber and by colonies developing from zoospores in roll tubes with cellobiose plus streptomycin and penicillin. Fungi were absent or in extremely small numbers in sheep fed unfertilized forage. Nylon bag digestibility studies showed that the fungi preferentially colonized the lignified cells of blade sclerenchyma by 6 h and caused extensive degradation by 24 h. In the absence of bacteria in in vitro studies, extensive hyphal development occurred; other lignified tissues in blades (i.e., mestome sheath and xylem) were attacked, resulting in a residue with partially degraded and weakened cell walls. Nonlignified tissues were also degraded. Breaking force tests of leaf blades incubated in vitro with penicillin and streptomycin and rumen fluid from sheep fed sulfur-fertilized forage or within nylon bags in such sheep showed a residue at least twice as fragile as that from sheep fed unfertilized forage. In vitro tests for dry matter loss showed that rumen fungi, in the absence of actively growing bacteria, could remove about 62% of the forage material. The response of rumen fungi in sheep fed sulfur-fertilized D. pentzii afforded a useful in vivo test to study the role of these microbes in fiber degradation. Our data establish that rumen fungi can be significant degraders of fiber and further establish a unique role for them in attacking and weakening lignocellulosic tissues. The more fragile residues resulting from attack by fungi could explain the greater intake consistently observed by sheep eating sulfur-fertilized compared with unfertilized D. pentzii forage.  相似文献   

12.
We investigated microbial interactions of aquatic bacteria associated with hyphae (the hyphosphere) of freshwater fungi on leaf litter. Bacteria were isolated directly from the hyphae of fungi from sedimented leaves of a small stream in the National Park “Lower Oder,” Germany. To investigate interactions, bacteria and fungi were pairwise co-cultivated on leaf-extract medium and in microcosms loaded with leaves. The performance of fungi and bacteria was monitored by measuring growth, enzyme production, and respiration of mono- and co-cultures. Growth inhibition of the fungus Cladosporium herbarum by Ralstonia pickettii was detected on leaf extract agar plates. In microcosms, the presence of Chryseobacterium sp. lowered the exocellulase, endocellulase, and cellobiase activity of the fungus. Additionally, the conversion of leaf material into microbial biomass was retarded in co-cultures. The respiration of the fungus was uninfluenced by the presence of the bacterium.  相似文献   

13.
A study was conducted for isolation, identification and antibacterial potential of fungal endophytes of Adenocalymma alliaceum Miers., (Bignoniaceae), a medicinal shrub vine plant which has long history for its usages in curing various disorders. A total of 149 isolates of endophytic fungi representing 17 fungal taxa were obtained from 270 segments (90 from each stem, leaf and petiole) of this plant. Hyphomycetes (77.85%) were the most prevalent, followed by Ascomycetes (8.05%) and Coelomycetes (4.03%) respectively. A considerable amount of fungal isolates was kept under (10.07%) Mycelia-Sterilia (MS). Leaf harboured maximum colonization of endophytic fungi (72.22%) which was greater than stem (67.78%) and petiole (25.54%). The Jc similarity index was maximum (0.619) between stem vs leaf followed by leaf vs petiole (0.571) and stem vs petiole (0.428). The dominant endophytic fungi were Alternaria alternata, Aspergillus niger, Stenella agalis, Fusarium oxysporum, Curvularia lunata and Fusarium roseum. Among twelve endophytic fungi tested for antibacterial activity, crude extracts of nine endophytic fungi (75%), showed antibacterial potential against one or more clinical human pathogens. Alternaria alternata, Curvularia lunata, Penicillium sp. and Chaetomium globosum exhibited significant antibacterial activity against 4 of 5 tested pathogens, showing broad spectrum activity. This investigation explains the value of sampling from different tissues of a host plant for the greater species diversity, and additionally, the antibacterial screening of some endophytic fungi from this specific medicinal plant may represent a unique source for many of the useful antibacterial compounds.  相似文献   

14.
Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate‐active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non‐cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV‐pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose‐degrading enzyme cocktail by 2.4‐fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro‐slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.  相似文献   

15.
Seven anaerobic fungal isolates from Cervus dama (domesticated and free living) were grown on carboxymethyl cellulose (CMC) and avicel, and monitored over a five day period for substrate utilization and cellulase activities. All fungal isolates showed monocentric growth patterns; four of them had polyflagellated zoospores and morphologically resembled members of the genus Neocallimastix; the other three had monoflagellated zoospores and resembled members of the genus Piromyces. All of the isolates degraded CMC and avicel, and exhibited cellulolytic activities (carboxymethyl cellulase-(CMC-ase) and avicelase).  相似文献   

16.
Brassica napus L. is an important crop plant, characterised by high nitrogen (N) levels in fallen leaves, leading to a significant restitution of this element to the soil, with important consequences at the economic and environmental levels. It is now well established that the N in fallen leaves is due to weak N remobilisation that is especially related to incomplete degradation of foliar proteins during leaf senescence. Identification of residual proteins in a fallen leaf (i.e. incompletely degraded in the last step of the N remobilisation process) constitutes important information for improving nutrient use efficiency. Proteome analysis of the vascular system (petioles) and blades from fallen leaves of Brassica napus was performed, and the 30 most abundant residual proteins in each tissue were identified. Among them, several proteins involved in N recycling remain in the leaf after abscission. Moreover, this study reveals that some residual proteins are associated with energy metabolism, protection against oxidative stress, and more surprisingly, photosynthesis. Finally, comparison of blade and petiole proteomes show that, despite their different physiological roles in the non‐senescing leaf, both organs redirect their metabolism in order to ensure catabolic reactions. Taken together, the results suggest that a better degradation of these leaf proteins during the senescence process could enable improvements in the N use efficiency of Brassica napus.  相似文献   

17.
Cell walls (CW) of untreated wheat straw and sulphur-dioxide (SO2)-treated wheat straw were used as model substrates for the hydrolysis and utilization of CW carbohydrates by pure cultures or pair-combinations of defined rumen bacterial strains. Fibrobacter succinogenes S85 and BL2 strains and their co-cultures with D1 were the best degraders of CW among ruminal cultures, solubilizing 37.2–39.6% of CW carbohydrates of untreated straw and 62.2–74.5% of SO2-treated straw. Complementary action between Butyrivibrio fibrisolvens D1 and the F. succinogenes strains was identified with respect to co-culture growth and carbohydrate utilization. However, the extent of CW solubilization was determined mainly by the F. succinogenes strains. In both substrates, utilization of solubilized cellulose by F. succinogenes S85 and BL2 monocultures was higher than that of xylan and hemicellulose: 96.5–98.3%, 34.4–40.5% and 33.5–36.2%, respectively. Under scanning electron microscopy visualization, S85 and BL2 cells of the co-cultures comprised the most dense layer of bacterial cell mass attached to and colonized on straw stems and leaves, whereas D1 cells were always nearby. Stems and leaves of the untreated straw were less crowded by attached bacteria than that of the SO2-treated straw. In both materials, the cell surface topography of S85 and BL2 bacteria attached to CW particles was specified by a coat of characteristic protuberant structures, polycellulosome complexes.  相似文献   

18.
Bacteria isolated from spent mushroom substrate (SMS) were evaluated for the suppression of Pyricularia grisea, the causal agent of gray leaf spot of perennial ryegrass (Lolium perenne) turf. Thirty-two of 849 bacterial isolates (3.8%) from SMS significantly inhibited the mycelial growth of P. grisea in vitro. Six bacterial isolates that afforded maximum inhibition of P. grisea were also refractory to Rhizoctonia solani, Rhizoctonia cerealis, Sclerotinia homoeocarpa, and Fusarium culmorum. Each of the six isolates was identified as Pseudomonas aeruginosa by fatty acid profile analysis. The biocontrol activity of the bacterial isolates was not compromised by a prolonged exposure to UV radiation in vitro. In controlled-environment chamber experiments, all 32 bacterial isolates were tested for suppression of gray leaf spot on Pennfine perennial ryegrass when applied as seed treatment or foliar sprays. Foliar applications of the bacteria (108 cfu/ml 0.1% carboxymethylcellulose), but not the seed treatment, significantly reduced disease severity and incidence. The three most efficient isolates from foliar application treatments, which were among the six bacterial isolates identified as P. aeruginosa, were further evaluated for suppression of gray leaf spot as a function of timing of application. The three isolates of P. aeruginosa suppressed gray leaf spot in perennial ryegrass in Cone-tainers when applied at 1, 3, and 7 days prior to inoculation with P. grisea both in controlled-environment chamber experiments, and in potted ryegrass plants maintained in the field. All application intervals, regardless of the bacterial isolate, provided significant reduction of gray leaf spot severity. Suppression of gray leaf spot by isolates of P. aeruginosa under controlled-environment chamber conditions was not different from that observed in potted ryegrass plants maintained in the field. In field experiments, an isolate of P. aeruginosa provided significant suppression of gray leaf spot when applied at 1, 7, and 14 days prior to inoculation with P. grisea. The bacterium proved effective against gray leaf spot of perennial ryegrass maintained as fairway and rough heights. These results indicate that P. aeruginosa may be a potential biocontrol agent for gray leaf spot of perennial ryegrass turf.  相似文献   

19.
The activity of enzymes characteristic for C4-type photosynthesis was determined in different organs of two herbaceous plants: Reynoutria japonica Houtt. and Helianthus tuberosus L. The activity of phosphoenolpyruvate carboxylase (PEPC) was usually higher in the roots, some of the stem tissues and petioles in comparison to the leaf blades. The highest activity of malic enzymes (NAD-ME, NADP-ME) and phosphoenolpyruvate carboxykinase (PEPCK) was in the petioles and stem tissues of both plants and the lowest in the leaf blades and the pith of Helianthus tuberosus L.  相似文献   

20.
Li YZ  Nan ZB 《Mycopathologia》2007,163(6):327-334
An Embellisia sp. has been established as the cause of a new disease of the herbaceous perennial forage legume, ‹standing milkvetch’ (Astragalus adsurgens Pall.) in Northern China, which severely reduces plant density and degrades A. adsurgens stands. The disease was common at an experimental location in Gansu Province where it was recognized by the occurrence of stunted plants with reddish-brown stems and yellow and necrotic leaf blades. An Embellisia sp. was isolated from symptomatic stem, leaf blade, petiole, and root tissues at varying frequencies of up to 90%. Single-spore isolates grew very slowly on PCA, PDA, V-8 and, wheat hay decoction agar. Pathogenicity was confirmed by inoculation of seeds, dipping 2-day-old pre-germinated seedlings in inoculum and spraying inoculum on 6-month-old plants. Symptoms on test plants included yellow leaf lesions, brown lesions on stems and petioles, stunted side-shoots with yellow, small, distorted and necrotic leaves, shoot blight, bud death, crown rot, root rot, and plant death. The disease is named as ‹yellow stunt and root rot’ of A. adsurgens to distinguish it from diseases caused by other known pathogens. Embellisia sp. is also pathogenic to A. sinicus but not to 11 other tested plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号