首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
着丝粒是真核染色体上的重要细胞器,是真核染色体作为基因载体行使其遗传功能的关键结构.着丝粒DNA首先是从酵母中分离克隆并被用以构建酵母人工染色体.鉴于真核有丝分裂机制研究和构建高等动物人工染色体研究的需要,从分离和检定过的小鼠着丝粒DNA库中筛选出了6#着丝粒DNA(SFADNA),并用荧光原位杂交法(FISH)对其进行了在染色体上的定位检定.用缺口平移法和PCR法分别标记了SFA DNA和SFA DNA中的小鼠寡份卫星DNA作为探针,分别与小鼠腹水癌细胞和小鼠L929细胞进行原位杂交;并用荧光抗体显示杂交信号的位置.结果,SFA DNA在两种细胞的中期染色体上的杂交信号都位于亚末端的初级缢痕处,表现为单一粗大的斑块.寡份卫星DNA在两种细胞的中期染色体上的杂交信号亦都位于亚末端的初级缢痕处,但极大多数的斑点均表现为成对的细小斑点.初级缢痕正是染色体着丝粒所在的特征性部位.故以上结果说明定位于该部位的克隆的6#SFA DNA,和其中的小鼠寡份卫星DNA都来源于小鼠着丝粒DNA.  相似文献   

2.
A complete 120 bp genomic consensus sequence for the mouse minor satellite has been determined from enriched L929 centromeric sequences. The extensive sequence homology existing between the major and minor satellite suggests an evolutionary relationship. Some sequences flanking the minor satellite has also been identified and they provide insight into centromeric DNA organization. Isotopic in situ hybridization analysis of the minor satellite to mouse L929 and Mus musculus metaphase spreads showed that this repetitive DNA class is localized specifically to centromeres of all chromosomes of the karyotype. With the use of high resolution non-isotopic fluorescence in situ hybridization the minor satellite is further localized to the outer surface of the centromere in a discrete region at or immediately adjacent to the kinetochore. Our cytological data suggests that the minor satellite might play a role in the organization of the kinetochore region rather than, as previously suggested, sites for general anchoring of the genome to the nuclear matrix.  相似文献   

3.
Centromere protein B (CENP-B) is a centromeric DNA-binding protein which recognizes a 17-bp sequence (CENP-B box) in human and mouse centromeric satellite DNA. The African green monkey (AGM) is phylogenetically closer to humans than mice and is known to contain large amounts of alpha-satellite DNA, but there has been no report of CENP-B boxes or CENP-B in the centromere domains of its chromosomes. To elucidate the AGM CENP-B-CENP-B box interaction, we have analyzed the gene structure, expression, biochemical properties, and centromeric localization of its CENP-B. The amino acid sequence deduced from the cloned AGM CENP-B gene was established to be highly homologous to that of human and mouse CENP-B. In particular, the DNA binding and homodimer formation domains demonstrated 100% identity to their human and mouse counterparts. Immunoblotting and DNA mobility shift analyses revealed CENP-B to be expressed in AGM cell lines. As predicted from the gene structure, the AGM CENP-B in the cell extracts exhibited the same DNA binding specificity and homodimer forming activity as human CENP-B. By indirect immunofluorescent staining of AGM mitotic cells with anti-CENP-B antibodies, a centromere-specific localization of AGM CENP-B could be demonstrated. We also isolated AGM alpha-satellite DNA with a CENP-B box-like sequence with CENP-B affinity. These results not only prove that CENP-B functionally persists in AGM cells but also suggest that the AGM genome contains the recognition sequences for CENP-B (CENP-B boxes with the core recognition sequence or CENP-B box variants) in centromeric satellite DNA.  相似文献   

4.
Satellite DNA (satDNA) is the main component of residual DNA in nuclear matrix (NM) preparations. Gel mobility shift assay (GMSA) revealed specific human satellite 3 (HS3) binding activity in NM extracts. An HS3 binding protein was purified using diethylaminoethyl (DEAE)-cellulose and preparative GMSA. The binding was specific, although other satDNA fragments compete to some extent for the binding. DNase I footprinting and methylation interference revealed multiple points of protection distributed throughout the HS3 fragment with periodicity of about 10 bp, mostly inside an AT island. Polyclonal antibodies (AB) were raised against HS3-protein complexes cut from the preparative GMSA gel. On immunoblots, AB recognise a protein, which is not lamin, with apparent molecular mass 70 kDa, the same as revealed by purification (p70). In in situ nuclear matrix preparations combined immunofluorescence (AB) and fluorescent in situ hybridisation (HS3) shows that HS3 and p70 areas correspond to each other. The localisation of this protein detected with AB in interphase nuclei coincides with the heterochromatic regions which surround nucleoli in correspondence with the known HS3 position in the nuclei.  相似文献   

5.
The alphoid DNA-CENP-B (centromere protein B) complex is the first sequence-specific DNA/protein complex detected in the centromeric region of human chromosomes. In the reaction, CENP-B recognizes a 17-bp sequence (CENP-B box) and assembles two alphoid DNA molecules into a complex, which is designated complex A (Muro, Y., H. Masumoto, K. Yoda, N. Nozaki, M. Ohashi, and T. Okazaki. 1992. J. Cell Biol. 116:585-596). Since CENP-B gene is conserved in mammalian species and CENP-B boxes are found also in mouse centromere satellite DNA (minor satellite), this sequence-specific DNA-protein interaction may be important for some kind of common centromere function. In this study we have characterized the structure of CENP-B and CENP-B-alphoid DNA complex. We have shown by chemical cross-linking that CENP-B formed a dimer, and have estimated by molecular weight determination the composition of complex A to be a CENP-B dimer and two molecules of alphoid DNA. The DNA binding domain has been delimited within the NH2-terminal 125-amino acid region containing four potential alpha-helices using truncated CENP-B made in Escherichia coli cells. We have shown that CENP-B had sites highly sensitive to proteases and that the DNA binding domain was separable from the dimerizing activity by the proteolytic cleavage at 20 kD from the COOH terminus of the molecule. Thus, CENP-B may organize a higher order structure in the centromere by juxtaposing two CENP-B boxes in the alphoid DNA repeat through both the DNA-protein and protein-protein interactions.  相似文献   

6.
The organization of the mouse satellite DNA at centromeres   总被引:2,自引:0,他引:2  
The mouse genome contains a major and a minor satellite DNA family of repetitive DNA sequences. The use of 5-azacytidine has allowed us to demonstrate that these satellite DNAs are organized in two separate domains at the centromeres of mouse chromosomes. The minor satellite is closer to the short arms of the acrocentric chromosomes than the major satellite. The major satellite is farther away, flanking the minor satellite and adjacent to the euchromatic long arm of each mouse chromosome. At the level of resolution afforded by the in situ hybridization technique it would appear that the organization of the centromeric domain of the mouse is similar to that in man. That is, both contain two repetitive DNA sequence families arranged in major blocks.  相似文献   

7.
As an adjunct to attempts to define functionally important sequences at human centromeres, we have undertaken a long-range physical analysis of these regions in the mouse. Mouse centromeres are usually situated very close to the chromosome ends and are closely associated with minor satellite sequences on the basis of cytological observations. Using pulsed-field gel electrophoresis we find that this satellite DNA is arranged as tandem arrays, predominantly uninterrupted by nonsatellite sequences. These arrays can be released largely intact by digestion with a range of enzymes that generally cleave frequently in non-satellite DNA. The restriction fragments carrying these arrays are polymorphic in size between inbred strains and provide direct markers for mouse centromeres. To illustrate the possible use of these polymorphic markers we have mapped a 1.3-Mb PvuII variant in a set of RI strains to the centromere of Chromosome 7. The minor satellite arrays are very close to the centromeric telomere and physical linkage with terminal repeat sequences can readily be detected, placing many minor satellite arrays on terminal restriction fragments smaller than 1 Mb. The apparent lack of any sizable amount of nonsatellite DNA between the minor satellite and the terminal repeat arrays indicates that many mouse chromosomes are truly telocentric.  相似文献   

8.
We studied the organization of mouse satellite 3 and 4 (MS3 and MS4) in comparison with major (MaSat) and minor (MiSat) DNA sequences, located in the centromeric and pericentromeric regions of mouse telocentric chromosomes by fiber-FISH. The centromeric region consists of a small block of MiSat and MS3 followed by a pericentromeric block of MaSat with MS4. Inside the block of the long-range cluster, MaSat repeats intermingle mostly with MS4, while MiSat intermingle with MS3. The distribution of GC-rich satellite DNA fragments is less strict than that of AT-rich fragments; it is possible to find MS3 fragments in the MaSat array and MS4 fragments in the MiSat array. The methylation pattern does not fully correspond to one of the four families of satellite DNA (satDNA). In each satDNA fragment only part of the DNA is methylated. MS3 and MS4 are heavily methylated being GC-rich. Pericentomeric satellite DNA fragments are more methylated than centromeric ones. Among the four families of satDNA MS4 is the most methylated while MiSat is methylated only to a minimal extent. Estimation of the average fragment length and average distance between fragments shows that the range of the probes used does not cover the whole centromeric region. The existence of unknown sequences in the mouse centromere is likely.  相似文献   

9.
Two cosmids (HRS-1 and HRS-2) containing mouse minor satellite DNA sequences have been isolated from a mouse genomic library. In situ hybridization under moderate stringency conditions to metaphase chromosomes from RCS-5, a tumor cell line derived from the SJL strain, mapped both HRS-1 and HRS-2 to the centromeric region of chromosome 4. Sequence data indicate that these cloned minor satellite DNA sequences have a basic higher order repeat of 180 bp, composed of three diverged 60-bp monomers. Digestion of mouse genomic DNA with several restriction enzymes produces a ladder of minor satellite fragments based on a 120-bp repeat. The restriction enzyme NlaIII (CATG) digests all the minor satellite DNA into three prominent bands of 120, 240, and 360 bp and a weak band of 180 bp. Thus, the majority of minor satellite sequences in the genome are arranged in repeats based on a 120-bp dimer, while the family of minor satellite sequences described here represents a rare variant of these sequences. Our results raise the possibility that there may be other variant families of minor satellites analogous to those of alphoid DNA present in humans.  相似文献   

10.
Centromeres are required for faithful segregation of chromosomes in cell division. It is not clear how centromere sites are specified on chromosomes in vertebrates. We have previously introduced a mini-chromosome, named ST1, into a variety of cell lines including human HT1080, mouse LA9 and chicken DT40. This mini-chromosome, segregating faithfully in these cells, contains mouse minor and major, and human Y -satellite DNA repeats. In this study, after determining the organisation of the satellite repeats, we investigated the location of the centromere on the mini-chromosome by combined immunocytochemistry and fluorescence in situ hybridisation analysis. Centromeric proteins were consistently co-localised with the minor satellite repeats in all three cell lines. When chromatin fibres were highly stretched, centromeric proteins were only seen on a small portion of the minor satellite repeats. These results indicate that a fraction of the minor satellite repeats is competent in centromere function not only in mouse but also in human and chicken cells.Kang Zeng and Jose I. de las Heras contributed equally to this work  相似文献   

11.
12.
Previous procedures for the extraction of DNA methylase (EC 2.1.1.37) from nuclei of mouse ascites cells have involved the use of buffers containing 0.2M NaCl. Whilst such 'soluble' methylase accounts for the bulk (70-80%) of DNA methylase activity a further portion of activity is detectable in a 'bound' form firmly associated with 2 M NaCl-resistant nuclear matrix-like structures. This association, which in part requires continuing DNA replication and protein synthesis, can, however, be disrupted in vitro with high concentrations of ammonium sulphate, and the enzymic properties of the 'bound' form of DNA methylase are similar to those described for the 'soluble' form.  相似文献   

13.
To determine whether yeast DNA can replicate or segregate in mammalian cells, we have transferred genomic DNA from the yeast Saccharomyces cerevisiae into mouse cells. Most of the lines contained stably integrated yeast DNA. However, in two of the lines, the yeast DNA was maintained as numerous small extrachromosomal elements which were still present after 26 cell divisions in selection but which were lost rapidly out of selection. This indicates that, although yeast DNA can replicate in mouse cells, the yeast centromere does not function to give segregation. In one cell line we observed a large novel chromosome consisting almost entirely of yeast DNA. This chromosome segregates well and contains mouse centromeric minor satellite DNA and variable amounts of major satellite DNA which probably comprise the functional centromere. The yeast DNA in the novel chromosome has a compacted chromatin structure which may be responsible for the efficient formation of anaphase bridges. Furthermore, yeast DNA integrated into mouse chromosomes forms constrictions at the point of integration. These features have previously been presumed to be hallmarks of centromeric function in transfection assays aimed at identifying putative centromeric DNA. Hence our results suggest caution be exercised in the interpretation of such assays.  相似文献   

14.
着丝粒是真核染色体上的重要细胞器,是真核染色体作为基因载体行使其遗传功能的关键结构。着丝粒DNA首先是从酵母中分离克隆并被用以构建酵母人工染色体。鉴于真核有丝分裂机制研究和构建高等动物人工染色体研究的需要,从分离和检定过的小鼠着丝粒DNA库中筛选出6#着丝粒DNA(SAF DNA),并用荧光原位杂交法(FISH)对其进行了在染色体上的定位检定。用缺口平移法和PCR法分别标记了SFA DNA和SFA DNA中的小鼠寡份卫星DNA作为探针,分别与小鼠腹水癌细胞和小鼠929细胞进行原位杂交;并用荧光抗体显示杂交信号的位置。结果:SFA DNA在两种细胞的中期染色体上的杂交信号都位于亚末端的初级缢痕处,表现为单一粗大的斑块。寡份卫星DNA在两种细胞的中期染色体上的杂交信号亦都位于亚末端的初级缢痕处,但极大多数的斑点均表现为成对的细小斑点。初级缢痕正是染色体着丝粒所在的物征性部位。故以上结果说明定位于该部位的克隆的6#SFA DNA,和其中的小鼠寡份卫星DNA都来源于小鼠着丝粒DNA。  相似文献   

15.
A familial, constitutionally rearranged human chromosome 17 is deleted for much of the DNA in its centromeric region but retains full mitotic centromere activity. Fluorescence in situ hybridization, pulsed-field gel electrophoresis, and Southern blot analysis of the residual centromeric region revealed a approximately 700-kb centromeric array of tandemly repeated alpha satellite DNA that was only approximately 20 to 30% as large as a normal array. This deletion was associated with a reduction in the amount of the centromere-specific antigen CENP-B detected by indirect immunofluorescence. The coincidence of the primary constriction, the small residual array of alpha satellite DNA, and the reduced amount of detectable CENP-B support the hypothesis that CENP-B is associated with alpha satellite DNA. Furthermore, the finding that both the deleted chromosome 17 and its derivative supernumerary fragment retained mitotic function and possess centromeric protein antigens suggests that human centromeres are structurally and functionally repetitive.  相似文献   

16.
Physical connections between mitotic chromosomes have been reported previously. It was assumed that the interchromosome connection was based on the DNA-protein thread. However, the data about DNA sequences and protein component in the thread is fragmentary. We demonstrated on the mouse cultured cell line and prematurely condensed chromosomes that: (a) all four mouse satellite DNA fragments (major and minor satellite, mouse satellite 3 (MS3) and mouse satellite 4 (MS4)) were involved in the thread formation; (b) MS4 was involved in the thread to the least extent among all the other fragments; (c) telomere was never a member of the thread; (d) the thread was synthesized at a late G(2) phase; (e) RNA helicase p68 and CENP-B were among the protein components of the interchromosome connection. It was shown by FACS analysis that in mouse and human cell lines: (1) the flow karyotype spectrums were never free from chromosome aggregates; (2) chromosome association did not depend on the chromosome length and each chromosome was free to associate with the other.  相似文献   

17.
The experiments described were designed to test the hypothesis that the (A+T)-specific DNA binding ligands Hoechst 33258 and distamycin A affect the condensation of mouse centromeric heterochromatin by competing for binding to satellite DNA with one or more chromosomal proteins. The studies focused on the nonhistone chromosomal protein HMG-I since its binding properties predict it would be a target for competition. Gel mobility shift assays show that HMG-I forms specific complexes with satellite DNA and that the formation of these complexes is competed for by both Hoechst and distamycin. In addition, methidium propyl EDTA Fe(II) [MPE Fe(II)] footprints of ligand-satellite DNA complexes showed essentially the same protection pattern for both drugs and a similar, but not identical, HMG-I footprint. If these in vitro results reflect the in vivo situation then the incomplete condensation of centromeric heterochromatin observed when mouse cells are grown in the presence of either chemical ligand could be a consequence of competition for binding of HMG-I (and possibly other proteins) to satellite DNA.by E.R. Schmidt  相似文献   

18.
T Sasaki  C Brakebusch  J Engel    R Timpl 《The EMBO journal》1998,17(6):1606-1613
Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resistance and immunological analysis. It was highly modified by N- and O-glycosylation but not by glycosaminoglycans. Ultracentrifugation showed non-covalent association into oligomers with molar masses of 1000-1500 kDa. Electron microscopy showed ring-like shapes with diameters of 30-40 nm. M2BP bound in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1 subunits but not to alpha2 and alpha6 subunits, RGD peptide or lactose. This distinguishes cell adhesion of M2BP from that of laminin and excludes involvement of lactose-binding galectin-3. Immunological assays demonstrated variable secretion by cultured human cells of M2BP, which was detected in the extracellular matrix of several mouse tissues.  相似文献   

19.
Minor satellite DNA, found at Mus musculus centromeres, is not present in the genome of the Asian mouse Mus caroli. This repetitive sequence family is speculated to have a role in centromere function by providing an array of binding sites for the centromere-associated protein CENP-B. The apparent absence of CENP-B binding sites in the M. caroli genome poses a major challenge to this hypothesis. Here we describe two abundant satellite DNA sequences present at M. caroli centromeres. These satellites are organized as tandem repeat arrays, over 1 Mb in size, of either 60- or 79-bp monomers. All autosomes carry both satellites and small amounts of a sequence related to the M. musculus major satellite. The Y chromosome contains small amounts of both major satellite and the 60-bp satellite, whereas the X chromosome carries only major satellite sequences. M. caroli chromosomes segregate in M. caroli x M. musculus interspecific hybrid cell lines, indicating that the two sets of chromosomes can interact with the same mitotic spindle. Using a polyclonal CENP-B antiserum, we demonstrate that M. caroli centromeres can bind murine CENP-B in such an interspecific cell line, despite the absence of canonical 17-bp CENP-B binding sites in the M. caroli genome. Sequence analysis of the 79-bp M. caroli satellite reveals a 17-bp motif that contains all nine bases previously shown to be necessary for in vitro binding of CENP-B. This M. caroli motif binds CENP-B from HeLa cell nuclear extract in vitro, as indicated by gel mobility shift analysis. We therefore suggest that this motif also causes CENP-B to associate with M. caroli centromeres in vivo. Despite the sequence differences, M. caroli presents a third, novel mammalian centromeric sequence producing an array of binding sites for CENP-B.  相似文献   

20.
CENP-B is a centromere associated protein originally identified in human cells as an 80 kDa autoantigen recognized by sera from patients with anti-centromere antibodies (ACA). Recent evidence indicates that CENP-B interacts with centromeric heterochromatin in human chromosomes and may bind to a specific subset of human alphoid satellite DNA. CENP-B has not been unambiguously identified in non-primates and could, in principal, be a primate-specific alphoid DNA binding protein. In this work, a human genomic DNA segment containing the CENP-B gene was isolated and subjected to DNA sequence analysis. In vitro expression identified the site for translation initiation of CENP-B, demonstrating that it is encoded by an intronless open reading frame (ORF) in human DNA. A homologous mouse gene was also isolated and characterized. It was found to possess a high degree of homology with the human gene, containing an intronless ORF coding for a 599 residue polypeptide with 96% sequence similarity to human CENP-B. 5 and 3 flanking and untranslated sequences were conserved at a level of 94.6% and 82.7%, respectively, suggesting that the regulatory properties of CENP-B may be conserved as well. CENP-B mRNA was detected in mouse cells and tissues and an immunoreactive nuclear protein identical in size to human CENP-B was detected in mouse 3T3 cells using human ACA. Analysis of the sequence of CENP-B revealed a segment of significant similarity to a DNA binding motif identified for the helix-loop-helix (HLH) family of DNA binding proteins. These data demonstrate that CENP-B is a highly conserved mammalian protein that may be a member of the HLH protein family and suggest that it plays a role in a conserved aspect of centromere structure or function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号