首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [α-32P]ATP, [γ-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the α-phosphate for phosphorylation of the 72 000 molecular weight protein.  相似文献   

2.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

3.
A method is described for purification of (Na+, K+)-ATPase which yielded approximately 60 mg of enzyme from 800 g of cardiac muscle with specific activities ranging from 340 to 400 mumol inorganic phosphate/mg protein per h (units/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a major 94 000 dalton polypeptide and four or five lesser components, one of which was a glycoprotein with an apparent molecular weight of 58 000. The enzyme preparation bound 600-700 pmol of [3H]ouabain/mg protein when incubated in the presence of either Mg2+ plus Pi, or Mg2+ plus ATP plus Na+, and incorporated more than 600 pmol 32P/mg protein when incubated with gamma-32P-labelled ATP in the presence of Mg2+ and Na+. The preparation is approximately 35% pure.  相似文献   

4.
The purified membrane fragments of sarcoplasmic reticulum (SR) of rabbit fast skeletal muscles were found to incorporate 32P from[gamma-32P]ATP in endogenous membrane substrates and in histone H1. The existence of membrane-bound protein kinase of SR was demonstrated by steady state binding of [3H]-cAMP to the SR membranes. The constant of [3H]cAMP binding to the membranes is 2.5 +/- 0.003 x 10(6) M-1, the number of binding sites is 6.1 +/- 0.8 pmol per 1 mg of protein. The endogenous phosphorylation of SR components was inhibited by cAMP and cGMP at concentrations of 10(-7)-10(-6) and depended on Mg2+ and Ca2+. The thermostable protein inhibitor of cAMP-dependent protein kinase inhibited the endogenous phosphorylation of SR membranes by 30-40%. The protein phosphoproduct of SR membranes revealed the properties of a phosphoester. The membrane-bound protein kinase was active towards the exogenous substrate--histone H1. Phosphorylation in the presence of histones was independent of cyclic nucleotides, Mg2+ and Ca2+. Fractionation of 32P-labelled solubilized membranes in polyacrylamide gel in the presence of Na-SDS showed that the radioactivity is bound to protein zones with molecular weights of 95 000 and 6000.  相似文献   

5.
Membranes prepared from highly purified rat liver lysosomes contain endogenous protein-phosphorylation activities. The transfer of phosphate to membrane fractions from [gamma-32P]ATP was analyzed by gel electrophoresis under acidic denaturing conditions. Two phosphopeptides were detected, with molecular weights of 3,000 and 14,000. Phosphorylation of these proteins was unaffected by the addition of cAMP, cGMP, or the heat-stable inhibitor of cAMP-dependent protein kinase. No additional phosphorylation was observed when cAMP-dependent protein kinase was included in the reaction or when exogenous protein kinase substrates were added. The 14,000-dalton 32P-labeled product was formed rapidly in the presence of low concentrations (250 microM) of either Ca2+ or Mg2+. This product was labile under both acidic and alkaline conditions, suggesting that this protein contains an acyl phosphate, present presumably as a catalytic intermediate in a phosphotransferase reaction. The lower molecular weight species required a high concentration (5 mM) of Mg2+ for phosphorylation, and micromolar concentrations of Ca2+ stimulated the Mg2+-dependent activity. The addition of Ca2+ and calmodulin stimulated the phosphorylation reaction to a greater extent than with Ca2+ alone. This activity was strongly inhibited by 0.2 mM LaCl3 and to a lesser extent by 50 microM chlorpromazine or trifluoperazine. These results suggest that the 3000-dalton peptide may be phosphorylated by a Ca2+, calmodulin-dependent kinase associated with the lysosomal membrane.  相似文献   

6.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

7.
Phosphorylation of the sensitive to GABA(A)-ergic ligands Cl-, HCO3--stimulated Mg2+-ATPase of the plasma membranes from fish brain by [gamma-32P]ATP was investigated in the presence of Mg2+. It was established, that formation of the phosphoprotein at 0-1 degrees C is dependent on time incubation and concentration of Mg2+ in the incubation medium. Hydroxylamine (50 mM) and pH (10) completely inhibited formation of phosphorylated intermediate. Ions of Cl- (10 mM)+HCO3- (2 mM) and also GABA (1-100 microM) dephosphorylated the enzyme. The dephosphorylating effect of GABA on the membrane samples did not appear in the presence of bicuculline. o-Vanadate (10 microM) eliminates the dephosphorylating effect of anions and GABA on the phosphoprotein. It was established by SDS-PAAG electrophoresis and autoradiographia that investigated phosphorylation and GABA(A)-induced dephosphorylation is performed by the protein with molecular weight aproximately 56 kDa. Such molecular weight has a subunit which forms oligomer composition of the sensitive to GABA(A)-ergic ligands Cl-, HCO3--ATPase from fish brain. The obtained data demonstrated that Cl, HCO3- ATPase from fish brain can be directly phosphorylated by [gamma-32P]ATP in the presence of Mg2+ and forms the phosphorylation intermediate.  相似文献   

8.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

9.
Incubation of a crude rat liver plasma membrane preparation with [gamma-32P]ATP resulted in a rapid Mg2+-dependent incorporation of 32P into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Preincubation of the membranes with cholera toxin under ADP-ribosylating conditions reduced the labeling of the polyphosphoinositides. This action of cholera toxin required NAD+ and guanine nucleotides, was dose-dependent with respect to cholera toxin, and could not be mimicked by cAMP. It therefore appears that ADP-ribosylation of the stimulatory guanine nucleotide-binding regulatory protein of adenylate cyclase, or another G-protein, in rat liver plasma membranes affects the activity of enzymes in the polyphosphoinositide pathway.  相似文献   

10.
Phosphorylation of NaI-treated bovine brain cortex microsomes by inorganic phosphate in the presence of Mg2+ and ouabain has been studied at 0 degrees C (pH 7.4) and 20 degrees C (pH 7.0). Nearly maximal (90%) and half-maximal phosphorylation are achieved at 20 degrees C within 2 min with 50--155 and 5.6--17 muM 32Pi, respectively, and at 0 degrees C within 75 s with 300--600 and 33--66 muM 32Pi, respectively. Maximal phosphorylation yields 146 pmol 32P - mg-1 protein. Without ouabain (20 degrees C, pH 7.0) less than 25% of the incorporation observed in the presence of ouabain is reached. Preincubation of the native microsomes with Mg2+ and K+, in order to decompose possibly present high-energy phosphoryl-bonds prior to ouabain treatment, does not affect the maximal phosphate incorporation. This indicates that the inorganic phosphate incorporation is not due to an exchange with high-energy phosphoryl-bonds, which might have been preserved in the microsomal preparations. Phosphorylation of the native microsomes by ATP in the presence of Mg2+ and Na+ reaches 90 and 50% maximal levels within 15--30 s at 0 degrees C and pH 7.4 at concentrations of [gamma-32P]ATP of 5--32 and 0.5--3.5 muM, respectively. The maximal phosphorylation level is 149 pmol 32P-mg-1 protein, equal to that of ouabain-treated microsomes phosphorylated by inorganic phosphate. Both inorganic phosphate and ATP phosphorylate on site per active enzyme subunit of 135 000 molecular weight. From the equilibrium constants for the phosphorylation of ouabain-treated microsomes by inorganic phosphate at 0 degrees C and 20 degrees C standard free-energy changes of --5.4 and --6.8 kcal/mol, respectively, are calculated. These values yield a standard enthalpy change of 14 kcal/mol and an entropy change of 70 cal/mol - degree K. This characterizes the reaction as a process driven by an entropy change. The intermediate formed by phosphorylation with Pi has maximal stability at acidic pH, as is the case for the intermediate formed with ATP. Solubilization in sodium dodecyl sulfate stabilizes the phosphoryl-bond in the pH range of 4--7. The non-solubilized preparation has optimal stability at pH 2--4, the level of which is equal to that of detergent-solubilized intermediate. Sodium dodecyl sulfate gel electrophoresis of the microsomes at pH 3, following incorporation of 32Pi yields 11 protein bands, only one of which (mol. wt 100 000--106 000) carries the radioactive label. This protein has the same molecular weight as the protein, which is phosphorylated by ATP in the presence of Mg2+ and Na+.  相似文献   

11.
Phosphorylation by [gamma-32P]ATP of proteins associated with the plasma membrane of Saccharomyces cerevisiae has been studied both in vivo and in vitro. Although at least nine proteins are labeled in vivo, there is only one major protein labeled in vitro. This species with an apparent molecular weight of 114,000 has been identified as the plasma membrane Mg2+-ATPase. Phosphorylation of this enzyme occurs exclusively on serine residues. This is the first report that the proton-translocating ATPase of fungal plasma membranes is subject to phosphorylation by a protein kinase.  相似文献   

12.
Incubation of a highly purified bovine spleen protein tyrosine kinase with [gamma-32P]ATP and Mg2+ resulted in a gradual radioactive labeling of the protein kinase (50 kDa) with no change in the protein kinase activity toward angiotensin II. On the other hand, treatment of the protein tyrosine kinase with an immobilized alkaline phosphatase caused essentially complete loss in the kinase activity, which could be restored by incubation of the enzyme with ATP and Mg2+. By using the alkaline phosphatase-treated kinase, time courses of the protein phosphorylation and the enzyme activation were demonstrated to correlate closely. These results indicate that this protein tyrosine kinase relies on autophosphorylation for activity and that the purified enzyme usually exists in a fully phosphorylated state. The radioactive labeling of the purified kinase during incubation with [gamma-32P]ATP resulted from a phosphate exchange reaction: the exchange of [gamma-32P]phosphate of ATP with the protein bound phosphate as previously suggested (Kong, S.K., and Wang, J.H. (1987) J. Biol. Chem. 262, 2597-2603). It could be shown that the autophosphorylation of phosphatase-treated tyrosine kinase was strongly inhibited by the substrate angiotensin II, whereas the exchange reaction carried out with untreated tyrosine kinase was not. Autophosphorylation is suggested to be an intermolecular reaction since its initial rate is proportional to the square of the protein concentration.  相似文献   

13.
Phosphorylation and dephosphorylation of the insulin receptor were examined in permeabilized rat adipocytes using pulse-chase techniques. Maximum insulin-dependent phosphorylation during a 2-min labeling period with 75 microM [gamma-32P]ATP was attained at 10(-6)-10(-7) M insulin with a small effect at 10(-9) M. The reaction utilized either Mn2+ or Mg2+, but insulin-dependent phosphorylation was 11-fold greater with Mn2+. In the absence of insulin, phosphorylation was 6-fold greater with Mn2+. With either cation, insulin (10(-7) M) was a potent stimulator of receptor phosphorylation with 5- and 8-fold increases above control levels in the presence of Mg2+ and Mn2+, respectively. Phosphorylation of the insulin receptor reached an apparent steady state within 30 s at 37 degrees C under all conditions. By phosphoamino acid analysis, all insulin- and Mn2+-dependent phosphorylation in the 95-kDa subunit of the insulin receptor was phosphotyrosine. A small amount of phosphoserine was detected, but it was not affected by either insulin or Mn2+. Dephosphorylation of the insulin receptor was examined by "chasing" labeled ATP after 2 min with a 40-fold excess of unlabeled ATP. Maximum dephosphorylation was reached in 2 min under all conditions. Insulin had no effect on the dephosphorylation reaction. The labile fraction of Mn2+-dependent phosphoreceptor dephosphorylated to one-half of its initial level in approximately 21 s at 37 degrees C. Vanadate, a potent phosphotyrosine phosphatase inhibitor, inhibited dephosphorylation of this phosphoreceptor by 25%. When vanadate was present during the 2-min labeling period, phosphorylation of control, and insulin-dependent receptor was increased by 50%. In summary, rapid "in vitro" autophosphorylation of the insulin receptor is coupled to an equally rapid dephosphorylation reaction in permeabilized adipocytes. This suggests that phosphorylation of the insulin receptor is a dynamic, rapidly reversible, insulin-dependent response in target cells and is consistent with it being involved in insulin signal transduction and insulin action.  相似文献   

14.
E R Sanchez  W B Pratt 《Biochemistry》1986,25(6):1378-1382
Two phosphoproteins are absorbed to protein A-Sepharose when cytosol from 32P-labeled L-cells is incubated with a monoclonal antibody against the glucocorticoid receptor: one is a 98K phosphoprotein that contains the steroid binding site, and the other is a 90K non-steroid-binding phosphoprotein that is associated with the molybdate-stabilized receptor [Housley, P. R., Sanchez, E. R., Westphal, H. M., Beato, M., & Pratt, W. B. (1985) J. Biol. Chem. 260, 13810-13817]. In this paper we have incubated L-cell cytosol with rabbit antiserum against the mouse glucocorticoid receptor and show that incubation of protein A-Sepharose-bound immune complexes with [gamma-32P]ATP and Mg2+ results in phosphorylation of the 98K steroid-binding protein but not of the 90K receptor-associated protein. Phosphorylation occurs regardless of whether the receptor is unoccupied or is present as the untransformed or transformed steroid-receptor complex. No phosphorylation occurs in the presence of Ca2+ instead of Mg2+. If protein A-Sepharose-bound immune complexes prepared with a monoclonal antibody against the receptor are incubated with [gamma-32P]ATP and Mg2+, neither protein is phosphorylated. If the protein A-Sepharose pellet is obtained from molybdate-stabilized cytosol that has been incubated both with monoclonal antibody to provide the 98K receptor and its 90K associated protein and with preimmune rabbit serum, which causes the nonspecific adsorption of an L-cell protein kinase, then incubation with [gamma-32P]ATP and Mg2+ causes receptor phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. Human erythrocyte membranes were preincubated with ethyleneglycolbis-(beta-aminoethyl)-N,N' tetraacetate (EGTA) and subsequently labelled for short periods with micromolar concentrations of [8-3-H, gamma-32-P]ATP. Under these conditions, and at temperatures smaller than or equal to 22 degrees C, both ATP hydrolysis and membrane phosphorylation were stimulated by Ca-2+. 2. The properties of the Ca-2+-stimulated ATP hydrolysis and associated phosphorylation of a 150 000 molecular weight protein component, previously described (Knauf, P. A., Proverbio, F. and Hoffman, J. F. (1974) J. Gen. Physiol. 63, 324-336), have been studied. The behavior of the phosphorylated component, ECaP, has properties consistent with its role as a phosphorylated intermediate of Ca-2+-ATPase activity, including: (1) similar dependence of the steady-state level of ECaP and Ca-2+-ATPase on ATP concentration; (2) rapid turnover apparent upon the addition of excess non-radioactive ATP; and (3) good correlation between the steady-state levels of Ca-2+-dependent phosphorylation and Ca-2+-ATPase activity in separate preparations possessing variable specific activity. Addition of excess EGTA to ECaP caused only partial dephosphorylation. Sensitivity of Ca-2+-stimulated ATP hydrolysis and associated phosphorylation to micromolar concentrations of Ca-2+ implicates this activity in the "high-affinity" Ca-2+-pump system of the human erythrocyte (Schatzmann, H. J. (1973) J. Physiol. London 235, 551-569).  相似文献   

16.
Proteins labeled with 32P can be used as sensitive "prime" in blot overlays to detect binding proteins or domains. Small G-protein Ras can bind GTP with extremely high affinity (Kd approximately 10(-11)-10(-12) M) in the presence of Mg2+. We have taken advantage of this property of Ras to develop a vector that expresses proteins of interest such as glutathione S-transferase (GST)/Ras fusion proteins for noncovalent labeling with [gamma-32P]GTP. The labeling efficiency of this method is >60% and involves a single short incubation step. We have previously identified several binding proteins for the second SH3 domain of the adaptor Nck using this method. Here we illustrate the overlay method using the GST/Ras system and compare results with the SH3 domain labeled by phosphorylation with [gamma-32P]ATP. Both methods are similarly specific and sensitive; however, we show that signals are dependent primarily on GST-mediated probe dimerization. These dimeric probes allow a more stable probe-target complex similar to immunoglobulin interactions, thus significantly improving the sensitivity of the technique.  相似文献   

17.
Incubation of purified rat brain tubulin with cholera toxin and radiolabeled [32P] or [8-3H]NAD results in the labeling of both alpha and beta subunits as revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Treatment of these protein bands with snake venom phosphodiesterase resulted in quantitative release of labeled 5'-AMP, respectively labeled with the corresponding isotope. Two-dimensional separation by isoelectric focusing and SDS-PAGE of labeled and native tubulin revealed that labeling occurs at least in four different isotubulins. The isoelectric point of the labeled isotubulins was slightly lower than that of native purified tubulin. This shift in mobility is probably due to additional negative charges involved with the incorporation of ADP-ribosyl residues into the tubulin subunits. SDS-PAGE of peptides derived from [32P]ADP-ribosylated alpha and beta tubulin subunits by Staphylococcus aureus protease cleavage showed a peptide pattern identical with that of native tubulin. Microtubule-associated proteins (MAP1 and MAP2) of high molecular weight were also shown to undergo ADP-ribosylation. Incubation of permeated rat neuroblastoma cells in the presence of [32P]NAD and cholera toxin results in the labeling of only a few cell proteins of which tubulin is one of the major substrates.  相似文献   

18.
H Bernardi  M Fosset  M Lazdunski 《Biochemistry》1992,31(27):6328-6332
Covalent labeling of nucleotide binding sites of the purified sulfonylurea receptor has been carried out with alpha-32P-labeled oxidized ATP. The main part of 32P incorporation is in the 145-kDa glycoprotein that has been previously shown to be the sulfonylurea binding protein (Bernardi et al., 1988). ATP and ADP protect against this covalent labeling with K0.5 values of 100 microM and 500 microM, respectively. Non-hydrolyzable analogs of ATP also inhibit 32P incorporation. Interactions between nucleotide binding sites and sulfonylurea binding sites have then been observed. AMP-PNP, a nonhydrolyzable analog of ATP, produces a small inhibition of [3H]glibenclamide binding (20-25%) which was not influenced by Mg2+. Conversely, ADP, which also produced a small inhibition (20%) in the absence of Mg2+, produced a large inhibition (approximately 80%) in the presence of Mg2+. This inhibitory effect of the ADP-Mg2+ complex was observed with a K0.5 value of 100 +/- 40 microM. All the results taken together indicate that ATP and ADP-Mg2+ binding sites that control the activity of KATP channels are both present on the same subunit that bears the receptors for antidiabetic sulfonylureas.  相似文献   

19.
In Paramecium, no Ca2(+)-ATPases with the properties of Ca2+ pumps have been identified. Here we report a pellicle associated Ca2(+)-ATPase activity and a corresponding phosphoprotein intermediate characteristic of a pump. The Ca2(+)-ATPase activity requires 3 mM Mg for optimal Ca2+ stimulation (KCa = 90 nM) and is specific for ATP as substrate (Km = 75 microM). Vanadate and calmidazolium inhibit Ca2(+)-stimulated activity with an EC50 of about 2 microM and 0.5 microM, respectively. Likewise, 10 microM trifluoperazine inhibits 80% of Ca2(+)-ATPase activity, but bovine calmodulin fails to stimulate. The Ca2(+)-ATPase is not inhibited by sodium azide (10 mM), oligomycin (10 micrograms/ml) or ouabain (0.2 mM). Incubation of pellicles with [gamma-32P]ATP specifically labels a 133 kDa protein in a Ca2(+)-dependent, hydroxylamine-sensitive manner, and the level of phosphorylation is increased by 100 microM La3+. Phosphorylation of an endoplasmic reticulum-enriched fraction labels a Ca2(+)-dependent protein different from the pellicle protein, being lower in molecular mass and unaffected by La3+. Ca2+ uptake by the alveolar sacs, integral components of the pellicle membrane complex, is poorly coupled to Ca2(+)-stimulated ATP hydrolysis (Ca2+ transported/ATP hydrolysed less than 0.2) and is much less sensitive to vanadate inhibition (EC50 approx. 20 microM) compared to the total Ca2(+)-ATPase activity. Therefore, the majority of the Ca2(+)-ATPase activity is likely to be plasma membrane associated.  相似文献   

20.
The components of bovine rod outer segments (ROS) and water-soluble extracts of ROS were separated by SDS-electrophoresis after incubation with [gamma-32P]ATP or [gamma-32P]GTP at different experimental conditions. After that gels were autoradiographed to reveal the phosphorylated intermediates. Our results suggest, that ROS contains the following protein kinase systems: 1) water-soluble cAMP-dependent protein kinases, that uses ATP, but not GTP, and phosphorylates the water-soluble 30 000 molecular weight protein; 2) protein kinase that uses GTP (probably, ATP also) and phosphorylates the 20 000 molecular weight protein in light-adapted ROS; 3) water-soluble cyclic nucleotide- and Ca2+-independent protein kinase that uses ATP rather than GTP and phosphorylates the water-soluble 70 000 molecular weight protein. The concentrations of phosphorylated intermediates in bovine ROS are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号