首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Kulandaivelu  D.O. Hall 《BBA》1976,430(1):46-52
The addition of α-benzyl-α-bromomalodinitrile to different controlled states (non-phosphorylating [2]. phosphorylating [3], ATP-inhibited [4] and uncoupled) of photosynthetic electron transport to ferricyanide or benzoquinone demonstrate a significant inhibition in isolated spinach chloroplasts. α-Benzyl-α-bromomalodinitrile pretreatement of isolated chloroplasts or addition of α-benzyl-α-bromomalodinitrile at the onset of illumination completely abolished the O2 evolving reaction. The level of the steady state fluorescence in intact chloroplasts showed a α-benzyl-α-bromomalodinitrile concentration-dependent increase. The gradual decrease in the reoxidation capacity of the reduced quencher, Q with increasing α-benzyl-α-bromomalodinitrile concentrations provides evidence for an additional inhibitory site for α-benzyl-α-bromomalodinitrile between the two photosystems.  相似文献   

2.
The herbicides trifluralin (alpha,alpha,alpha-trifluoro-2,6-dinitro-N, N-dipropyl-p-toluidine) and diallate (S-[2,3-dichloroallyl] diisopropylthiocarbamate) inhibit electron transport, ATP synthesis, and cytochrome f reduction by isolated spinach (Spinacia oleracea L.) chloroplasts. Both compounds inhibit noncyclic electron transport from H(2)O to ferricyanide more than 90% in coupled chloroplasts at concentrations less than 50 mum. Neither herbicide inhibits electron transport in assays utilizing only photosystem I activity, and the photosystem II reaction elicited by addition of oxidized p-phenylenediamine or 2,5-dimethylquinone is only partially inhibited by herbicide concentrations which block electron flow from H(2)O to ferricyanide. Inhibition of ATP synthesis parallels inhibition of electron flow in all noncyclic assay systems, and cyclic ATP synthesis catalyzed by either diaminodurene or phenazine metho-sulfate is susceptible to inhibition by both herbicides. These results indicate that trifluralin and diallate both inhibit electron flow in isolated chloroplasts at a point in the electron transport chain between the two photosystems.  相似文献   

3.
Nitrite reduction in either whole, isolated spinach chloroplasts (Spinacia oleracea L.) or in reconstituted spinach chloroplasts is stimulated by a short period of photosynthetic CO2 fixation in the light prior to nitrite addition. With reconstituted chloroplasts, a similar stimulation can be obtained in nitrite reduction without CO2 fixation by the addition of dihydroxyacetone phosphate or fructose 6-phosphate. Specific intermediate metabolites of the photosynthetic carbon reduction cycle may have a regulatory role in nitrite reduction in chloroplasts in the light.  相似文献   

4.
The activity of NADP and O2 photoreduction by water is essentially higher in chloroplasts isolated from pea seedlings (Pisum sativum L.) grown under blue light as compared with that from plants grown under red light. In contrast, the photoreduction of NADP and O2 with photosystem I only is practically the same or even lower in chloroplasts isolated from plants grown under blue light. The addition of plastocyanin does not affect the rate or the extent of NADP photoreduction by water in the chloroplasts isolated from plants grown under blue light, whereas it sharply activates NADP reduction in the chloroplasts isolated from plants grown under red light. The extent of the light-induced oxidation of cytochrome f is appreciably higher in chloroplasts isolated from plants grown under blue light. Cytochrome b559 plays the predominant role in the oxidoreductive reactions of these chloroplasts. Furthermore, the fluorescence measurements indicate more effective transfer of excitation energy from chlorophyll to the photosystem II reaction center in chloroplasts isolated from plants grown under blue light.  相似文献   

5.
Abstract A simple mechanical method for the rapid isolation of chloroplasts with high rates of photosynthesis from young leaves of oat (Avena sativa L.) was described. The photosynthetic activity of these chloroplasts was stable for at least 2 h with rates of CO2-dependent O2 evolution of 30–40 μmol g 1 Chl s 1. The photosynthetic properties of these chloroplasts were similar to those reported for spinach and pea chloroplasts isolated by mechanical disruption. The pH optimum for photosynthetic O2 evolution was pH 7.6. The induction time was 0.5–2 min. Maximal rates of photosynthetic O2 evolution in these chloroplast preparations were obtained in the absence of both divalent cations and EDTA. Addition of divilent cations strongly inhibited photosynthesis which could be partially restored by the subsequent addition of EDTA. But when these cations were not present in the assay medium the addition of EDTA greater than 1 mol m 3 decreased photosynthetic activity. The optimal orthophosphate concentration required for photosynthesis in these chloroplast preparations was 0.2–0.3 mol m 3. In contrast, the addition of pyrophosphate either in the light or dark inhibited photosynthesis. In a comparative study, chloroplasts were also isolated from oat and wheat (Triticum aestivum L., cultivar Hybrid C306) protoplasts. These chloroplast preparations were found to have properties similar to those determined for oat chloroplasts isolated by the mechanical method reported above.  相似文献   

6.
Phosphorylase kinase phosphorylation of skeletal-muscle troponin T.   总被引:1,自引:1,他引:0       下载免费PDF全文
When [14C]diacylgalactosylglycerol was added to isolated pea or lettuce chloroplasts linolenate synthesis was seen. The desaturation of [14C]linoleate in diacylgalactosylglycerol to [14C]linolenate was stimulated by the addition of a soluble protein fraction containing lipid-exchange activity. Other [14C]acyl lipids were ineffective, except that [14C]phosphatidylcholine in the presence of UDP-galactose and sn-glycerol 3-phosphate could also supply [14C]linoleate for desaturation. These results are consistent with a role of diacylgalactosylglycerol in linolenate synthesis, as indirectly suggested by labelling experiments.  相似文献   

7.
Uncoupled noncyclic electron flow in stacked (granal) chloroplasts with a lateral heterogeneity in the distribution of the two photosystems has been compared with that in unstacked (agranal) chloroplasts with a near-uniform distribution. Chloroplasts were maintained in either structural state in the same assay medium so as to equalize effects of ionic composition which may influence reaction rates. The assay medium, an ion-deficient solution, was capable of supporting high rates of electron flow from water to methyl viologen. At high irradiance, unstacked chloroplasts exhibited an uncoupled rate which was 30% (in chloroplasts isolated from lettuce grown in low light) or 55% (in chloroplasts isolated from lettuce grown in high light) higher than that of stacked chloroplasts; the percentage remained relatively constant in the temperature range 7 to 22 degrees C for both high-light and low-light chloroplasts. At low irradiance, stacked low-light chloroplasts, despite the spatial separation of the two photosystems, gave higher rates of electron flow than did unstacked low-light chloroplasts. The addition of MgCl2 to stacked chloroplasts increased the uncoupled rate of noncyclic electron flow, but only at relatively high irradiances. The differences observed for stacked and unstacked chloroplasts, and for high-light and low-light chloroplasts are discussed. The approach taken in this work should be useful in other comparisons of stacked and unstacked chloroplasts.  相似文献   

8.
Robinson SP 《Plant physiology》1985,79(4):996-1002
Spinach leaf chloroplasts isolated in isotonic media (330 millimolar sorbitol, −1.0 megapascals osmotic potential) had optimum rates of photosynthesis when assayed at −1.0 megapascals. When chloroplasts were isolated in hypertonic media (720 millimolar sorbitol, −2.0 megapascals osmotic potential) the optimum osmotic potential for photosynthesis was shifted to −1.8 megapascals and the chloroplasts had higher rates of CO2-dependent O2 evolution than chloroplasts isolated in 330 millimolar sorbitol when both were assayed at high solute concentrations.

Transfer of chloroplasts isolated in 330 millimolar sorbitol to 720 millimolar sorbitol resulted in decreased chloroplast volume but this shrinkage was only transient and the chloroplasts subsequently swelled so that within 2 to 3 minutes at 20°C the chloroplast volume had returned to near the original value. Thus, actual steady state chloroplast volume was not decreased in hypertonic media. In isotonic media, there was a slow but significant uptake of sorbitol by chloroplasts (10 to 20 micromoles per milligram chlorophyll per hour at 20°C). Transfer of chloroplasts from 330 millimolar sorbitol to 720 millimolar sorbitol resulted in rapid uptake of sorbitol (up to 280 micromoles per milligram chlorophyll per hour at 20°C) and after 5 minutes the concentration of sorbitol inside the chloroplasts exceeded 500 millimolar. This uptake of sorbitol resulted in a significant underestimation of chloroplast volume unless [14C]sorbitol was added just prior to centrifuging the chloroplasts through silicone oil. Sudden exposure to osmotic stress apparently induced a transient change in the permeability of the chloroplast envelope since addition of [14C]sorbitol 3 minutes after transfer to hypertonic media (when chloroplast volume had returned to normal) did not result in rapid uptake of labeled sorbitol.

It is concluded that chloroplasts can osmotically adjust in vitro by uptake of solutes which do not normally penetrate the chloroplast envelope, resulting in a restoration of normal chloroplast volume and partially preventing the inhibition of photosynthesis by high solute concentrations. The results indicate the importance of matching the osmotic potential of isolation media to that of the tissue, particularly in studies of stress physiology.

  相似文献   

9.
Protein synthesis in isolated, intact pea chloroplasts was optimized and compared to translation within chloroplasts in vivo. Many polypeptides labeled with [35S]methionine in isolated intact chloroplasts did not comigrate with polypeptides which were labeled within chloroplasts in vivo. Antibodies to the large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) immunoprecipitated [35S]-labeled large subunit plus several lower-molecular-mass translation products of isolated chloroplasts. The lower-molecular-mass soluble translation products synthesized in pulse-labeled chloroplasts were converted into full-length large-subunit polypeptides during a subsequent chase period. This result suggests that many of the polypeptides observed in pulse-labeled chloroplasts are incomplete translation products which are the result of ribosome pausing at discrete points along chloroplast mRNAs. The pulse-chase technique was used to follow synthesis of the 34.5-kDa precursor of the psb A gene product and its processing to the mature 32-kDa polypeptide in isolated chloroplasts. Chloroplast translation profiles obtained using the pulse-chase assay were very similar to translation profiles obtained in vivo thus extending the utility of protein synthesis in isolated chloroplasts.  相似文献   

10.
Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of 14CO2 under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO2 concentrations. Incorporation of 14C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate inhibited photosynthetic carbon metabolism indirectly by decreasing the reducing potential of chloroplasts through reduction of glyoxylate to glycolate. This hypothesis was supported by measuring the reduction of [14C]glyoxylate by chloroplasts. Incubation of isolated mesophyll cells with glyoxylate had no effect on net photosynthetic CO2 uptake, but increased labeling was observed in 6-P-gluconate, a key indicator of decreased reducing potential. The possibility that glyoxylate was affecting photosynthetic metabolism by decreasing chloroplast pH cannot be excluded. Increased 14C-labeling of ribulose-1,5-bis-P and decreased 3-P-glyceric acid and glycolate labeling upon addition of glyoxylate to chloroplasts suggested that ribulose-bis-P carboxylase and oxygenase might be inhibited either indirectly or directly by glyoxylate. Glyoxylate addition decreased 14CO2 labeling into glycolate and glycine by isolated mesophyll cells but had no effect on net 14CO2 fixation. Glutamate had little effect on net photosynthetic metabolism in chloroplast preparations but did increase 14CO2 incorporation by 15% in isolated mesophyll cells under air levels of CO2.  相似文献   

11.
Chloroplasts isolated from Euglena gracilis made iron deficient by growth on 0.5 μm iron show distinct qualitative and quantitative changes in their polypeptide composition in comparison with iron-sufficient (40 μm) chloroplasts. These changes were noted in the stromal, thylakoid, and envelope subfractions. Iron-deficient chloroplasts have a sedimentation behavior similar to that of iron-sufficient chloroplasts and also contain substantial amounts of ribulose-1,5-bisphosphate carboxylase. In addition, iron-deficient chloroplasts incorporate [3H]leucine into polypeptides at rates about one-third of those from control chloroplasts (40 μm Fe) on a per-microgram-chlorophyll basis. Incorporation of [3H]leucine into specific polypeptides, resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, shows relatively normal synthesis of the large subunit of ribulose-1,5-bisphosphate carboxylase and two of the three major chloroplast-derived polypeptides of the thylakoids. No incorporation was detected, however, into a polypeptide of ca. 33 kd which is synthesized by normal plastids. Iron-deficient chloroplasts also synthesize a stromal polypeptide of ca. 85 kd not seen in chloroplasts from normal cells. This evidence is consistent with a direct or indirect role for iron in the regulation of synthesis of specific proteins in the chloroplast.  相似文献   

12.
Johnson EJ  Bruff BS 《Plant physiology》1967,42(10):1321-1328
Washed whole chloroplasts of Spinacia oleracea isolated and assayed in a tris (hydroxymethyl aminomethane)-HCl buffered sucrose solution exhibited low dark CO2 fixing activity, whereas washed whole chloroplasts isolated in the same buffer but assayed in that buffer without sucrose exhibited much greater dark CO2 fixing activity. The lowered activity could be attributed to the impermeability of the chloroplast membrane to ribose-5-phosphate or adenosine triphosphate. The preservation of the integrity of the chloroplast membrane, as reflected by its impermeability to either or both of the abovementioned compounds, was measured by the fixation of 14CO2 into acid-stable products in the presence of ribose-5-phosphate and adenosine triphosphate by the whole chloroplast as compared with fixation by the chloroplast extract. An effect (i.e., apparent resistance to the passage of ribose-5-phosphate or adenosine-5-triphosphate into the chloroplast) similar to, but less pronounced than, that produced by the presence of sucrose in the isolation medium was observed upon the addition of MnCl2 or CaCl2 to the buffered sucrose isolation medium. The addition of KCl enhanced slightly the effect produced by addition of sucrose alone to the isolation medium. The presence of MgCl2 in the isolation medium, however, either caused the chloroplasts to become leaky or more fragile since more of the activity of the carboxylative phase enzymes appeared in the cytoplasm. When a mixture of all of the metal ions was added to the buffered sucrose suspending medium, the chloroplasts exhibited the same response observed with MgCl2 alone. The addition of ethylene diaminetetraacetate or dithiothreitol appeared to alter the permeability of the chloroplast membrane nonspecifically when the assay was conducted in the absence of sucrose. Specific activities (μmoles CO2 fixed/mg chlorophyll × hr) as high as 329.6 have been observed for dark fixation by chloroplasts. The phosphoenolpyruvate carboxylase activity in the chloroplasts was only one-seventh that of ribulose diphosphate carboxylase. The phosphoenolpyruvate carboxylase activity in the cytoplasm was 5 times that of the chloroplasts.  相似文献   

13.
In previous work (D. Post-Beittenmiller, J.G. Jaworski, J.B. Ohlrogge [1991] J Biol Chem 266: 1858-1865), the in vivo acyl-acyl carrier protein (ACP) pools were measured in spinach (Spinacia oleracea) leaves and changes in their levels were compared to changes in the rates of fatty acid biosynthesis. To further examine the pools of substrates and cofactors for fatty acid biosynthesis and to evaluate metabolic regulation of this pathway, we have now examined the coenzyme A (CoA) and short chain acyl-CoA pools, including acetyl- and malonyl-CoA, in isolated spinach and pea (Pisum sativum) chloroplasts. In addition, the relationships of the acetyl- and malonyl-CoA pools to the acetyl- and malonyl-ACP pools have been evaluated. These studies have led to the following conclusions: (a) Essentially all of the CoA (31-54 μm) in chloroplasts freshly isolated from light-grown spinach leaves or pea seedling was in the form of acetyl-CoA. (b) Chloroplasts contain at least 77% of the total leaf acetyl-CoA, based on comparison of acetyl-CoA levels in chloroplasts and total leaf. (c) CoA-SH was not detected either in freshly isolated chloroplasts or in incubated chloroplasts and is, therefore, less than 2 μm in the stroma. (d) The malonyl-CoA:ACP transacylase reaction is near equilibrium in both light- and dark-incubated chloroplasts, whereas the acetyl-CoA:ACP transacylase reaction is far from equilibrium in light-incubated chloroplasts. However, the acetyl-CoA:ACP transacylase reaction comes nearer to equilibrium when chloroplasts are incubated in the dark. (e) Malonyl-CoA and -ACP could be detected in isolated chloroplasts only during light incubations, and increased with increased rates of fatty acid biosynthesis. In contrast, both acetyl-CoA and acetyl-ACP were detectable in the absence of fatty acid biosynthesis, and acetyl-ACP decreased with increased rates of fatty acid biosynthesis. Together these data have provided direct in situ evidence that acetyl-CoA carboxylase plays a regulatory role in chloroplast fatty acid biosynthesis.  相似文献   

14.
Synthetic abilities of Euglena chloroplasts in darkness   总被引:1,自引:0,他引:1  
Protein synthesis, normally a light-dependent process in isolated mature chloroplasts of Euglena gracilis var. bacillaris will take place in darkness if ATP and Mg2+ (ATP/Mg) are supplied. Either 5 or 10 mM ATP plus 15 mM MgCl2 are optimal and rates equal to those in the light can be obtained. Since ATP and Mg2+ are not stoichiometrically related, and since the optimal Mg2+ concentration is similar to that which stabilizes chloroplast ribosomes in vitro, it is suggested that the chloroplast is freely permeable to Mg2+ under these conditions. Protein synthesis under these conditions is not inhibited appreciably by DCMU, FCCP, cycloheximide, or by the addition of ribonuclease, but is highly sensitive to chloramphenicol. Carbon dioxide fixation is also a light-dependent process in isolated mature chloroplasts from Euglena, but addition of ATP (5 mM) and fructose bisphosphate (5 mM) plus aldolase (1.0 unit/ml) (fructose-1,6-bisphosphate/aldolase) yields CO2 fixation rates in darkness that are 43% of those normally obtained in the light. Mg2+ higher than 1.0 mM (e.g., 16 mM) is somewhat inhibitory. Chlorophyll synthesis from 5-aminolevulinate in 36 h developing chloroplasts from Euglena is also light-dependent, but addition of ATP/Mg and fructose-1,6-bis-phosphate/aldolase in darkness brings about the accumulation of a compound having the same RF on chromatography as protochlorophyllide from Barley; a subsequent brief illumination of the chloroplasts converts this compound to a compound with the RF of chlorophyll. Thus Euglena chloroplasts supplied with appropriate additions can carry out protein synthesis, carbon dioxide fixation and most of chlorophyll synthesis in darkness. This versatility is appropriate in photosynthetic organelles isolated from photo-organotrophic cells.  相似文献   

15.
1. The effect of the addition of a number of nitroimidazoles was tested on fatty acid synthesis by germinating pea seeds, isolated lettuce chloroplasts and a soluble fraction from pea seeds. 2. All the compounds tested had a marked inhibition on stearate desaturation by lettuce chloroplasts and on the synthesis of very-long-chain fatty acids by pea seeds. 3. In contrast, the effect of the drugs on total fatty acid synthesis from [14C]acetate in chloroplasts was related to the compound's electron reduction potentials. 4. Of the compounds used, only metronidazole had a marked inhibition on palmitate elongation in the systems tested. 5. The mechanism of inhibition of plant fatty acid synthesis by nitroimidazoles is discussed and the possible relevance of these findings to their neurotoxicity is suggested.  相似文献   

16.
A detailed analysis was made of individual phosphatidylglycerol (PG) molecular species isolated from microsomes and chloroplasts at various times after labeling Dunaliella salina cells with [14C]palmitic, [14C]oleic, or [14C]lauric acid. The patterns of [14C]fatty acid incorporation were in agreement with PG being formed by the "eucaryotic" type pathway in microsomes and the "procaryotic" type pathway in chloroplasts. In Dunaliella, which lacks a quantitatively significant flux of eucaryotic-type lipids from microsomes into chloroplast glycolipids, indications were found for a more subtle movement of microsomally synthesized PG into the chloroplasts. This transfer was more evident in cells stressed by exposure to 12 degrees C than it was at 30 degrees C, and may afford a mechanism for recruiting key microsomal PG molecular species toward low-temperature acclimation in chloroplasts.  相似文献   

17.
Quercetin interaction with the chloroplast ATPase complex   总被引:1,自引:0,他引:1  
1. Quercetin, a flavonoid which acts as an energy transfer inhibitor in photophosphorylation is shown to inhibit the P-ATP exchange activity of membrane-bound CF1 and the ATPase activity of isolated CF1. Quercetin, affects also the proton uptake in chloroplasts in a manner similar to that of dicyclohexylcarbodiimide. 2. The light-dependent proton uptake in EDTA-treated chloroplasts is stimulated by quercetin. In untreated chloroplasts quercetin has a dual effect: it enhances at pH above 7.5 while at lower pH values it decreases the extent of H+ uptake. Similar effects were obtained with dicyclohexylcarbodiimide. 3. Like quercetin, dicyclohexylcarbodiimide was also found to inhibit the ATPase activity of isolated CF1. 4. Quercetin inhibits uncoupled electron transport induced by either EDTA-treatment of chloroplasts or by addition of uncouplers. Quercetin restores H+ uptake in both types of uncoupled chloroplasts. 5. The mode of action of quercetin and dicyclohexylcarbodiimide in photophosphorylation is discussed, and interaction with both CF1 and F0 is suggested.  相似文献   

18.
Nucleotides formation after addition of [γ32P]-ATP has been analysed in isolated chloroplasts in the presence of exogenous CDP, UDP and GDP. The highest level of phosphotransfer was observed on CDP and UDP after 10 min incubation. Interestingly, the phosphorylation increase of chloroplastic CDP in organello correlated with the time-dependent dephosphorylation of a 18-kDa polypeptide, thereby indicating that CDP, the major endogenous phosphorylated NDP, is likely to be a potent in vivo substrate for this phosphoprotein. The 18-kDa polypeptide was immunoprecipitated with antibodies directed against human nucleoside diphosphate kinase (NDPK) A/B and spinach NDPK-II, both belonging to the ubiquitous family of NDPKs (EC 2.7.4.6). Using recombinant NDPK-II, we could not show a preference for CDP in vitro, suggesting either that CDP is the most available NDPK-II substrate in intact chloroplasts or a chloroplastic factor modulates the enzyme affinity for nucleoside diphosphate substrates in vivo.  相似文献   

19.
The pH dependence of the photoreduction of ferricyanide and the photoreduction of NADP from water and photosystem I activity have been compared in isolated chloroplasts from mesophyll and bundle sheath cells of Zea mays. The maximum activity of photoreduction of ferricyanide occurs at pH 8.5 in isolated mesophyll chloroplasts. The addition of methylamine does not cause a marked shift in the pH maximum, but brief sonication lowers the pH maximum to 7.0. In contrast, isolated bundle sheath chloroplasts have a pH maximum at 7.0 and the shape of the pH versus activity curve is similar to that of sonicated mesophyll chloroplasts. When photoreduction of ferricyanide by the isolated chloroplasts is measured at their pH maxima, the values for bundle sheath chloroplasts are about half those of methylamine-treated mesophyll chloroplasts on a chlorophyll basis.  相似文献   

20.
Incorporation of [14C]acetate or [14C]pyruvate into fatty acids in isolated corn seedling chloroplasts was inhibited 90% or greater by 10 microM sethoxydim or 1 microM haloxyfop. At these concentrations, neither sethoxydim nor haloxyfop inhibited [14C]acetate incorporation into fatty acids in isolated pea chloroplasts. Sethoxydim (10 microM) and haloxyfop (1 microM) did not inhibit incorporation of [14C]malonyl-CoA into fatty acids in cell free extracts from corn tissue cultures. Acetyl coenzyme A carboxylase (EC 6.4.1.2) from corn seedling chloroplasts was inhibited by both sethoxydim and haloxyfop, with I50 values of 2.9 and 0.5 microM, respectively. This enzyme in pea was not inhibited by 10 microM sethoxydim or 1 microM haloxyfop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号