首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CFTR contributes to Cl? and HCO?? transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl? and HCO?? in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl? and HCO?? regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO?? than when it contains Cl?. This difference appears to reflect differences in the ability of extracellular HCO?? and Cl? to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO?? concentrations and membrane potentials and can result in up to ~50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.  相似文献   

2.
Guard cell anion channels (GCAC1) catalyze the release of anions across the plasma membrane during regulated volume decrease and also seem to be involved in the targeting of the plant growth hormones auxins. We have analyzed the modulation and inhibition of these voltage-dependent anion channels by different anion channel blockers. Ethacrynic acid, a structural correlate of an auxin, caused a shift in activation potential and simultaneously a transient increase in the peak current amplitude, whereas other blockers shifted and blocked the voltage-dependent activity of the channel. Comparison of dose-response curves for shift and block imposed by the inhibitor, indicate two different sites within the channel which interact with the ligand. The capability to inhibit GCAC1 increases in a dose-dependent manner in the sequence: probenecid less than A-9-C less than ethacrynic acid less than niflumic acid less than IAA-94 less than NPPB. All inhibitors reversibly blocked the anion channel from the extracellular side. Channel block on the level of single anion channels is characterized by a reduction of long open transitions into flickering bursts, indicating an interaction with the open mouth of the channel. IAA-23, a structural analog of IAA-94, was used to enrich ligand-binding polypeptides from the plasma membrane of guard cells by IAA-23 affinity chromatography. From this protein fraction a 60 kDa polypeptide crossreacted specifically with polyclonal antibodies raised against anion channels isolated from kidney membranes. In contrast to guard cells, mesophyll plasma membranes were deficient in voltage-dependent anion channels and lacked crossreactivity with the antibody.  相似文献   

3.
Closing of stomatal pores in the leaf epidermis of higher plants is mediated by long-term release of potassium and the anions chloride and malate from guard cells and by parallel metabolism of malate. Previous studies have shown that slowly activating anion channels in the plasma membrane of guard cells can provide a major pathway for anion efflux while also controlling K+ efflux during stomatal closing: Anion efflux produces depolarization of the guard cell plasma membrane that drives K+ efflux required for stomatal closing. The patch-clamp technique was applied to Vicia faba guard cells to determine the permeability of physiologically significant anions and halides through slow anion channels to assess the contribution of these anion channels to anion efflux during stomatal closing. Permeability ratio measurements showed that all tested anions were permeable with the selectivity sequence relative to Cl- of NO3- > Br- > F- ~ Cl- ~ I- > malate. Large malate concentrations in the cytosol (150 mM) produced a slow down-regulation of slow anion channel currents. Single anion channel currents were recorded that correlated with whole-cell anion currents. Single slow anion channels confirmed the large permeability ratio for nitrate over chloride ions. Furthermore, single-channel studies support previous indications of multiple conductance states of slow anion channels, suggesting cooperativity among anion channels. Anion conductances showed that slow anion channels can mediate physiological rates of Cl- and initial malate efflux required for mediation of stomatal closure. The large NO3- permeability as well as the significant permeabilities of all anions tested indicates that slow anion channels do not discriminate strongly among anions. Furthermore, these data suggest that slow anion channels can provide an efficient pathway for efflux of physiologically important anions from guard cells and possibly also from other higher plant cells that express slow anion channels.  相似文献   

4.
Organic-acid secretion from higher plant roots into the rhizosphere plays an important role in nutrient acquisition and metal detoxification. In this study we report the electrophysiological characterization of anion channels in Arabidopsis (Arabidopsis thaliana) root epidermal cells and show that anion channels represent a pathway for citrate efflux to the soil solution. Plants were grown in nutrient-replete conditions and the patch clamp technique was applied to protoplasts isolated from the root epidermal cells of the elongation zone and young root hairs. Using SO4(2-) as the dominant anion in the pipette, voltage-dependent whole-cell inward currents were activated at membrane potentials positive of -180 mV exhibiting a maximum peak inward current (I(peak)) at approximately -130 mV. These currents reversed at potentials close to the equilibrium potential for SO4(2-), indicating that the inward currents represented SO4(2-) efflux. Replacing intracellular SO4(2-) with Cl- or NO3(-) resulted in inward currents exhibiting similar properties to the SO4(2-) efflux currents, suggesting that these channels were also permeable to a range of inorganic anions; however when intracellular SO4(2-) was replaced with citrate or malate, no inward currents were ever observed. Outside-out patches were used to characterize a 12.4-picoSiemens channel responsible for these whole-cell currents. Citrate efflux from Arabidopsis roots is induced by phosphate starvation. Thus, we investigated anion channel activity from root epidermal protoplasts isolated from Arabidopsis plants deprived of phosphate for up to 7 d after being grown for 10 d on phosphate-replete media (1.25 mm). In contrast to phosphate-replete plants, protoplasts from phosphate-starved roots exhibited depolarization-activated voltage-dependent citrate and malate efflux currents. Furthermore, phosphate starvation did not regulate inorganic anion efflux, suggesting that citrate efflux is probably mediated by novel anion channel activity, which could have a role in phosphate acquisition.  相似文献   

5.
Anion channels in the plasma membrane of both plant and animal cells participate in a number of important cellular functions such as volume regulation, trans-epithelial transport, stabilization of the membrane potential and excitability. Only very recently attention has turned to the presence of anion channels in higher plant cells. A dominant theme among recent discoveries is the role of Ca2+ in activating or modulating channel current involved in signal transduction. The major anion channel of stomatal guard cell protoplasts is a 32-40 pS channel which is highly selective for anions, in particular NO3-, Cl- and malate. These channels are characterized by a steep voltage dependence. Anion release is elicited upon depolarization and restricted to a narrow voltage span of -100 mV to the reversal potential of anions. During prolonged activation the current slowly inactivates. A rise in cytoplasmic calcium in the presence of nucleotides evokes activation of the anion channels. Following activation they catalyse anion currents 10-20 times higher than in the inactivated state thereby shifting the resting potential of the guard cell from a K(+)-conducting to an anion-conducting state. Patch-clamp studies have also revealed that growth hormones directly affect voltage-dependent activity of the anion channel in a dose-dependent manner. Auxin binding resulted in a shift of the activation potential towards the resting potential. Auxin-dependent gating of the anion channel is side- and hormone-specific. Its action is also channel-specific as K+ channels coexisting in the same membrane patch were insensitive to this ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Taylor AR  Brownlee C 《Plant physiology》2003,131(3):1391-1400
We investigated the membrane properties and dominant ionic conductances in the plasma membrane of the calcifying marine phytoplankton Coccolithus pelagicus using the patch-clamp technique. Whole-cell recordings obtained from decalcified cells revealed a dominant anion conductance in response to membrane hyperpolarization. Ion substitution showed that the anion channels were selective for Cl(-) and Br(-) over other anions, and the sensitivity to the stilbene derivative 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, ethacrynic acid, and Zn(2+) revealed a pharmacological profile typical of many plant and animal anion channels. Voltage activation and kinetic characteristics of the C. pelagicus Cl(-) channel are consistent with a novel function in plants as the inward rectifier that tightly regulates membrane potential. Membrane depolarization gave rise to nonselective cation currents and in some cases evoked action potential currents. We propose that these major ion conductances play an essential role in membrane voltage regulation that relates to the unique transport physiology of these calcifying phytoplankton.  相似文献   

7.
Phospholemman (PLM), a 72-amino acid membrane protein with a single transmembrane domain, forms taurine-selective ion channels in lipid bilayers. Because taurine forms zwitterions, a taurine-selective channel might have binding sites for both anions and cations. Here we show that PLM channels indeed allow fluxes of both cations and anions, making instantaneous and voltage-dependent transitions among conformations with drastically different ion selectivity characteristics. This surprising and novel ion channel behavior offers a molecular explanation for selective taurine flux across cell membranes and may explain why molecules in the phospholemman family can induce cation- or anion-selective conductances when expressed in Xenopus oocytes.  相似文献   

8.
Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S‐type) and rapid (R‐type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage‐independent anion channel component in guard cells. In contrast, the R‐type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R‐type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark‐ and CO2‐induced stomatal closure, as well as in response to the drought‐stress hormone abscisic acid. Patch‐clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R‐type currents compared with wild‐type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage‐dependent anion currents reminiscent to R‐type channels could be activated. In line with the features of the R‐type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R‐Type channels, like voltage‐dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long‐term anion and K+ efflux via SLAC1 and GORK, respectively.  相似文献   

9.
The majority of mammalian cells demonstrate regulatory volume decrease (RVD) following swelling caused by hyposmotic exposure. A critical signal initiating RVD is activation of nucleotide receptors by ATP. Elevated extracellular ATP in response to cytotoxic cell swelling during pathological conditions also may initiate loss of taurine and other intracellular osmolytes via anion channels. This study characterizes neuronal ATP-activated anion current and explores its role in net loss of amino acid osmolytes. To isolate anion currents, we used CsCl as the major electrolyte in patch electrode and bath solutions and blocked residual cation currents with NiCl(2) and tetraethylammonium. Anion currents were activated by extracellular ATP with a K(m) of 70 microM and increased over fourfold during several minutes of ATP exposure, reaching a maximum after 9.0 min (SD 4.2). The currents were blocked by inhibitors of nucleotide receptors and volume-regulated anion channels (VRAC). Currents showed outward rectification and inactivation at highly depolarizing membrane potentials, characteristics of swelling-activated anion currents. P2X agonists failed to activate the anion current, and an inhibitor of P2X receptors did not block the effect of ATP. Furthermore, current activation was observed with extracellular ADP and 2-(methylthio)adenosine 5'-diphosphate, a P2Y(1) receptor-specific agonist. Much less current activation was observed with extracellular UTP, suggesting the response is mediated predominantly by P2Y(1) receptors. ATP caused a dose-dependent loss of taurine and alanine that could be blocked by inhibitors of VRAC. ATP did not inhibit the taurine uptake transporter. Thus extracellular ATP triggers a loss of intracellular organic osmolytes via activation of anion channels. This mechanism may facilitate neuronal volume homeostasis during cytotoxic edema.  相似文献   

10.
Excitatory amino acid transporter (EAAT) glutamate transporters function not only as secondary active glutamate transporters but also as anion channels. Recently, a conserved aspartic acid (Asp112) within the intracellular loop near to the end of transmembrane domain 2 was proposed as a major determinant of substrate-dependent gating of the anion channel associated with the glial glutamate transporter EAAT1. We studied the corresponding mutation (D117A) in another EAAT isoform, EAAT4, using heterologous expression in mammalian cells, whole cell patch clamp, and noise analysis. In EAAT4, D117A modifies unitary conductances, relative anion permeabilities, as well as gating of associated anion channels. EAAT4 anion channel gating is characterized by two voltage-dependent gating processes with inverse voltage dependence. In wild type EAAT4, external l-glutamate modifies the voltage dependence as well as the minimum open probabilities of both gates, resulting in concentration-dependent changes of the number of open channels. Not only transport substrates but also anions affect wild type EAAT4 channel gating. External anions increase the open probability and slow down relaxation constants of one gating process that is activated by depolarization. D117A abolishes the anion and glutamate dependence of EAAT4 anion currents and shifts the voltage dependence of EAAT4 anion channel activation by more than 200 mV to more positive potentials. D117A is the first reported mutation that changes the unitary conductance of an EAAT anion channel. The finding that mutating a pore-forming residue modifies gating illustrates the close linkage between pore conformation and voltage- and substrate-dependent gating in EAAT4 anion channels.  相似文献   

11.
Slow anion channels in the plasma membrane of guard cells have been suggested to constitute an important control mechanism for long-term ion efflux, which produces stomatal closing. Identification of pharmacological blockers of these slow anion channels is instrumental for understanding plant anion channel function and structure. Patch clamp studies were performed on guard cell protoplasts to identify specific extracellular inhibitors of slow anion channels. Extracellular application of the anion channel blockers NPPB and IAA-94 produced a strong inhibition of slow anion channels in the physiological voltage range with half inhibition constants (K1/2) of 7 and 10 [mu]M, respectively. Single slow anion channels that had a high open probability at depolarized potentials were identified. Anion channels had a main conductance state of 33 [plus or minus] 8 pS and were inhibited by IAA-94. DIDS, which has been shown to be a potent blocker of rapid anion channels in guard cells (K1/2 = 0.2 [mu]M), blocked less than 20% of peak slow anion currents at extracellular or cytosolic concentrations of 100 [mu]M. The pharmacological properties of slow anion channels described here differ from those recently described for rapid anion channels in guard cells, fortifying the finding that two highly distinct types or modes of voltage- and second messenger-dependent anion channel currents coexist in the guard cell plasma membrane. Bioassays using anion channel blockers provide evidence that slow anion channel currents play a substantial role in the regulation of stomatal closing. Interestingly, slow anion channels may also function as a negative regulator during stomatal opening under the experimental conditions applied here. The identification of specific blockers of slow anion channels reported here permits detailed studies of cell biological functions, modulation, and structural components of slow anion channels in guard cells and other higher plant cells.  相似文献   

12.
A novel transport protein with the properties of voltage-driven organic anion transport was isolated from pig kidney cortex by expression cloning in Xenopus laevis oocytes. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for p-aminohippurate (PAH) transport in high potassium medium. A 1856-base pair cDNA encoding a 467-amino acid peptide designated as OATV1 (voltage-driven organic anion transporter 1) was isolated. The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate. The homology of this transporter to known members of the organic anion transporter family (OAT family) was about 25-30%. OATV1-mediated PAH transport was affected by the changes in membrane potential. The transport was Na+-independent and enhanced at high concentrations of extracellular potassium and low concentrations of extracellular chloride. Under the voltage clamp condition, extracellularly applied PAH induced outward currents in oocytes expressing OATV1. The current showed steep voltage dependence, consistent with the voltage-driven transport of PAH by OATV1. The PAH transport was inhibited by various organic anions but not by organic cations, indicating the multispecific nature of OATV1 for anionic compounds. This transport protein is localized at the apical membrane of renal proximal tubule, consistent with the proposed localization of a voltage-driven organic anion transporter. Therefore, it is proposed that OATV1 plays an important role to excrete drugs, xenobiotics, and their metabolites driven by membrane voltage through the apical membrane of the tubular epithelial cells into the urine.  相似文献   

13.
During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses.  相似文献   

14.
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell.  相似文献   

15.
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.  相似文献   

16.
The presence of Al(3+) in the rhizosphere induces citrate efflux from the root apex of the Al-tolerant maize (Zea mays) hybrid South American 3, consequently chelating and reducing the activity of toxic Al(3+) at the root surface. Because citrate is released from root apical cells as the deprotonated anion, we used the patch-clamp technique in protoplasts isolated from the terminal 5 mm of the root to study the plasma membrane ion transporters that could be involved in Al-tolerance and Al-toxicity responses. Acidification of the extracellular environment stimulated inward K(+) currents while inhibiting outward K(+) currents. Addition of extracellular Al(3+) inhibited the remaining K(+) outward currents, blocked the K(+) inward current, and caused the activation of an inward Cl(-) current (anion efflux). Studies with excised membrane patches revealed the existence of Al-dependent anion channels, which were highly selective for anions over cations. Our success in activating this channel with extracellular Al(3+) in membrane patches excised prior to any Al(3+) exposure indicates that the machinery required for Al(3+) activation of this channel, and consequently the whole root Al(3+) response, is localized to the root-cell plasma membrane. This Al(3+)-activated anion channel may also be permeable to organic acids, thus mediating the Al-tolerance response (i.e. Al-induced organic acid exudation) observed in intact maize root apices.  相似文献   

17.
K+ channels with two-pore domain (K2p) form a large family of hyperpolarizing channels. They produce background currents that oppose membrane depolarization and cell excitability. They are involved in cellular mechanisms of apoptosis, vasodilatation, anesthesia, pain, neuroprotection and depression. This review focuses on TREK-1, TREK-2 and TRAAK channels subfamily and on the mechanisms that contribute to their molecular heterogeneity and functional regulations. Their molecular diversity is determined not only by the number of genes but also by alternative splicing and alternative initiation of translation. These channels are sensitive to a wide array of biophysical parameters that affect their activity such as unsaturated fatty acids, intra- and extracellular pH, membrane stretch, temperature, and intracellular signaling pathways. They interact with partner proteins that influence their activity and their plasma membrane expression. Molecular heterogeneity, regulatory mechanisms and protein partners are all expected to contribute to cell specific functions of TREK currents in many tissues.  相似文献   

18.
Stomatal guard cells control CO(2) uptake and water loss between plants and the atmosphere. Stomatal closure in response to the drought stress hormone, abscisic acid (ABA), results from anion and K(+) release from guard cells. Previous studies have shown that cytosolic Ca(2+) elevation and ABA activate S-type anion channels in the plasma membrane of guard cells, leading to stomatal closure. However, membrane-bound regulators of abscisic acid signaling and guard cell anion channels remain unknown. Here we show that the ATP binding cassette (ABC) protein AtMRP5 is localized to the plasma membrane. Mutation in the AtMRP5 ABC protein impairs abscisic acid and cytosolic Ca(2+) activation of slow (S-type) anion channels in the plasma membrane of guard cells. Interestingly, atmrp5 insertion mutant guard cells also show impairment in abscisic acid activation of Ca(2+)-permeable channel currents in the plasma membrane of guard cells. These data provide evidence that the AtMRP5 ABC transporter is a central regulator of guard cell ion channel during abscisic acid and Ca(2+) signal transduction in guard cells.  相似文献   

19.
Stomatal closure is known to be associated with early defence responses of plant cells triggered by microbe-associated molecular patterns (MAMPs). However, the molecular mechanisms underlying these guard-cell responses have not yet been elucidated. We therefore studied pathogen-induced changes in ion channel activity in Hordeum vulgare guard cells. Barley mildew (Blumeria graminis) hyphae growing on leaves inhibited light-induced stomatal opening, starting at 9 h after inoculation, when appressoria had developed. Alternatively, stomatal closure was induced by nano-infusion of chitosan via open stomata into the sub-stomatal cavity. Experiments using intracellular double-barreled micro-electrodes revealed that mildew stimulated S-type (slow) anion channels in guard cells. These channels enable the efflux of anions from guard cells and also promote K(+) extrusion by altering the plasma membrane potential. Stimulation of S-type anion channels was also provoked by nano-infusion of chitosan. These data suggest that MAMPs of mildew hyphae penetrating the cuticle provoke activation of S-type anion channels in guard cells. In response, guard cells extrude K(+) salts, resulting in stomatal closure. Plasma membrane anion channels probably represent general targets of MAMP signaling in plants, as these elicitors depolarize the plasma membrane of various cell types.  相似文献   

20.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号