首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 fimbriae are heteropolymeric surface organelles responsible for the D-mannose-sensitive (MS) adhesion of Escherichia coli. We recently reported that variation of receptor specificity of type 1 fimbriae can result solely from minor alterations in the structure of the gene for the FimH adhesin subunit. To further study the relationship between allelic variation of the fimH gene and adhesive properties of type 1 fimbriae, the fimH genes from five additional strains were cloned and used to complement the FimH deletion in E. coli KB18. When the parental and recombinant strains were tested for adhesion to immobilized mannan, a wide quantitative range in the ability of bacteria to adhere was noted. The differences in adhesion do not appear to be due to differences in the levels of fimbriation or relative levels of incorporation of FimH, because these parameters were similar in low-adhesion and high-adhesion strains. The nucleotide sequence for each of the fimH genes was determined. Analysis of deduced FimH sequences allowed identification of two sequence homology groups, based on the presence of Asn-70 and Ser-78 or Ser-70 and Asn-78 residues. The consensus sequences for each group conferred very low adhesion activity, and this low-adhesion phenotype predominated among a group of 43 fecal isolates. Strains isolated from a different host niche, the urinary tract, expressed type 1 fimbriae that conferred an increased level of adhesion. The results presented here strongly suggest that the quantitative variations in MS adhesion are due primarily to structural differences in the FimH adhesin. The observed differences in MS adhesion among populations of E. coli isolated from different host niches call attention to the possibility that phenotypic variants of FimH may play a functional role in populations dynamics.  相似文献   

2.
The development of methodology to differentiate mixed populations of Escherichia coli in the secondary habitat might improve monitoring of fecal pollution indicators and facilitate the development of strategies to mitigate bacterial pollution. The objective of this study was to determine the ability of denaturing gradient gel electrophoresis (DGGE) to differentiate mixed assemblages of E. coli in the natural environment. After confirming the identity of 184 environmental bacterial isolates as E. coli, each was subjected to polymerase chain reaction (PCR) of the beta-glucuronidase gene (uidA) followed by DGGE fingerprinting. The ability of DGGE to discriminate individual isolates at the strain level was determined by comparing fingerprints to those resulting from a standard, library-dependent fingerprinting method, BOX-PCR. Computerized analysis of fingerprints indicated that DGGE and BOX-PCR identified 15 and 21 unique phylotypes respectively. Rank-abundance plots comparing the numerical distribution of unique E. coli phylotypes detected by both methods revealed no difference in resolution at the population level. In water and sediment samples from two beaches, DGGE effectively distinguished indigenous E. coli populations with an average rate of correct classification (site-based) of 83%. Denaturing gradient gel electrophoresis of uidA genes isolated and PCR-amplified from environmental samples appears to be an effective tool to differentiate unique E. coli populations and should be useful to characterize E. coli dynamics in the secondary environment.  相似文献   

3.
Peptide Nucleic Acids (PNA) is a new type of DNA analogue with a peptide backbone. We developed a rapid identification system of Escherichia. coli O157:H7 using PNA mediated PCR clamping. Firstly, we confirmed a single nucleotide alteration in the uidA gene (T93G), which is specific to E. coli O157: H7. We designed forward mutant DNA primer, wild type PNA, and a reverse DNA primer corresponding to the uidA sequence. PCR cycle consisted of four steps including dual annealing temperatures, 57 degrees C and 45 degrees C. Among 20 E. coli strains with various serotypes and 4 neighboring strains, the amplified bands (517 bp) were detected only in E. coli O157:H7 strains. PNA has specifically inhibited the PCR amplification from a wild type uidA gene. We successfully developed a multiplex PCR system, which detects both shigatoxin (stx) and uidA genes at once, to get reliable results by easier and rapid operation. We also analyzed kinetic parameters of PNA/DNA association using surface plasmon resonance and melting temperature using fluorescence resonance energy transfer (FRET). We discussed a selection mechanism of PCR clamping from these results.  相似文献   

4.
A set of Escherichia coli freshwater isolates was chosen to compare the effectiveness of denaturing gradient gel electrophoresis (DGGE) vs temporal temperature gradient gel electrophoresis (TTGE) for separating homologous amplicons from the respective uidA region differing in one to seven single base substitutions. Both methods revealed congruent results but DGGE showed a five to eight times higher spatial separation of the uidA amplicons as compared with TTGE, although the experiments were performed at comparable denaturing gradients. In contrast to TTGE, DGGE displayed clear and focused bands. The results strongly indicated a significantly higher discrimination efficiency of the spatial chemical denaturing gradient as compared with the temporal temperature denaturing gradient for separating the uidA amplicons. Denaturing gradient gel electrophoresis proved to be highly efficient in the differentiation of E. coli uidA sequence types.  相似文献   

5.
The complete sequence of the plasmid MccC7-H22 encoding microcin C7, isolated from probiotic E. coli H22, was determined and analyzed. DNA of pMccC7-H22 comprises 32,014 bp and contains 39 predicted ORFs. Two main gene clusters, i.e., genes involved in plasmid replication and maintenance and genes encoding microcin C7 synthesis, are separated by several ORFs homologous to ORFs present in IS (insertion sequence) elements and transposons. Additional 14 ORFs code for proteins with similarities to known proteins (4 ORFs) or for hypothetical proteins with unknown function (10 ORFs). The differences in G+C content of individual ORFs and gene clusters of pMccC7-H22 indicate a mosaic structure for the plasmid, resulting from recombination events. Real-time PCR quantification was applied to measure the copy number of pMccC7-H22. Escherichia coli H22 carries approximately 5 copies of pMccC7-H22 per chromosome and thus pMccC7-H22 belongs to the group of relatively low-copy-number plasmids. Following 360 generations, all bacterial colonies (out of 100 tested) synthesized microcin C7 indicating that pMccC7-H22 is stably maintained in E. coli H22. Screening of 105 E. coli strains isolated from human fecal samples revealed 2 (1.9%) strains that produced microcin C7.  相似文献   

6.
A multiplex PCR assay specifically detecting Escherichia coli O157 : H7 was developed by employing primers amplifying a DNA sequence upstream of E. coli O157 : H7 eaeA gene and genes encoding Shiga-like toxins (SLT) I and II. Analysis of 151 bacterial strains revealed that all E. coli O157 : H7 strains were identified simultaneously with the SLT types and could be distinguished from E. coli O55 : H7 and E. coli 055 : NM, and other non-O157 SLT-producing E. coli strains. Primer design, reaction composition (in particular, primer quantity and ratios), and amplification profile were most important in development of this multiplex PCR. This assay can serve not only as a confirmation test but also potentially can be applied to detect the pathogen in food.  相似文献   

7.
A probe specific for the uidA gene of Escherichia coli hybridized with 112 of 116 E. coli isolates examined, including 31 beta-D-glucuronidase-negative and 12 enterohemorrhagic E. coli serotype O157:H7 isolates. Southern hybridizations confirmed the presence of a 900-bp HinfI fragment from the uidA gene in all isolates examined, suggesting that uidA gene sequences are present in most E. coli.  相似文献   

8.
P Feng  R Lum    G W Chang 《Applied microbiology》1991,57(1):320-323
A probe specific for the uidA gene of Escherichia coli hybridized with 112 of 116 E. coli isolates examined, including 31 beta-D-glucuronidase-negative and 12 enterohemorrhagic E. coli serotype O157:H7 isolates. Southern hybridizations confirmed the presence of a 900-bp HinfI fragment from the uidA gene in all isolates examined, suggesting that uidA gene sequences are present in most E. coli.  相似文献   

9.
Three commercially available kits that were supplemented with substrates for enzyme reactions were evaluated to determine their abilities to detect coliforms and fecal coliforms in foods. Japanese and U.S. Food and Drug Administration standard methods, as well as two agar plate methods, were compared with the three commercial kits. A total of 50 food samples from various retailers were examined. The levels of detection of coliforms were high with the commercial kits (78 to 98%) compared with the levels of detection with the standard methods (80 to 83%) and the agar plate methods (56 to 83%). Among the kits tested, the Colilert kit had highest level of recovery of coliforms (98%), and the level of recovery of Escherichia coli as determined by beta-glucuronidase activity with the Colilert kit (83%) was comparable to the level of recovery obtained by the U.S. Food and Drug Administration method (87%). Isolation of E. coli on the basis of the beta-glucuronidase enzyme reaction was found to be good. Levine's eosine methylene blue agar, which has been widely used in various laboratories to isolate E. coli was compared with 4-methylumbelliferyl-beta-D-glucuronide (MUG)-supplemented agar for isolation of E. coli. Only 47% of the E. coli was detected when eosine methylene blue agar was used; however, when violet red bile (VRB)-MUG agar was used, the E. coli detection rate was twice as high. Of the 200 E. coli strains isolated, only 2 were found to be MUG negative, and the gene responsible for beta-glucuronidase activity (uidA gene) was detected by the PCR method in these 2 strains. Of the 90 false-positive strains isolated that exhibited various E. coli characteristic features, only 2 non-E.coli strains hydrolyzed MUG and produced fluorescent substrate in VRB-MUG agar. However, the PCR did not amplify uidA gene products in these VRB-MUG fluorescence-positive strains.  相似文献   

10.
The intestinal microbe Escherichia coli is subject to fecal deposition in secondary habitats, where it persists transiently, allowing for the opportunity to colonize new hosts. Selection in the secondary habitat can be postulated, but its impact on the genomic diversity of E. coli is unknown. Environmental selective pressure on extrahost E. coli can be revealed by landscape genetic analysis, which examines the influences of dispersal processes, landscape features, and the environment on the spatiotemporal distribution of genes in natural populations. We conducted multilocus sequence analysis of 353 E. coli isolates from soil and fecal samples obtained in a recreational meadow to examine the ecological processes controlling their distributions. Soil isolates, as a group, were not genetically distinct from fecal isolates, with only 0.8% of genetic variation and no fixed mutations attributed to the isolate source. Analysis of the landscape genetic structure of E. coli populations showed a patchy spatial structure consistent with patterns of fecal deposition. Controlling for the spatial pattern made it possible to detect environmental gradients of pH, moisture, and organic matter corresponding to the genetic structure of E. coli in soil. Ecological distinctions among E. coli subpopulations (i.e., E. coli reference collection [ECOR] groups) contributed to variation in subpopulation distributions. Therefore, while fecal deposition is the major predictor of E. coli distributions on the field scale, selection imposed by the soil environment has a significant impact on E. coli population structure and potentially amplifies the occasional introduction of stress-tolerant strains to new host individuals by transmission through water or food.  相似文献   

11.
B Huey  J Hall 《Journal of bacteriology》1989,171(5):2528-2532
Extensive restriction-fragment-length polymorphism was revealed in Escherichia coli strains by using a region of the bacteriophage M13 genome as a DNA hybridization probe. This variation was observed across natural strains, in clinical samples, and to a lesser extent in laboratory strains. The sequence in M13 which revealed this fingerprint pattern was a region of the gene III coat protein, which contains two clusters of a 15-base-pair repeat. Oligonucleotides made to a consensus of these repeats also revealed the fingerprint profile. While this consensus sequence has significant homology to the lambda chi site sequence, an oligonucleotide made of the chi sequence did not reveal polymorphic fingerprint patterns in E. coli. The strain variation revealed by the M13 and M13-derived oligonucleotide probes will be useful for bacterial characterization and should find use in studies of bacterial evolution and population dynamics. The findings raise questions about what these repeated sequences are and why they are so variable.  相似文献   

12.
Criteria for sub-typing of microbial organisms by DNA sequencing proposed by Olive and Bean were applied to several genes in Escherichia coli to identify targets for the development of microbial source tracking assays. Based on the aforementioned criteria, the icd (isocitrate dehydrogenase), and putP (proline permease) genes were excluded as potential targets due to their high rates of horizontal gene transfer; the rrs (16S rRNA) gene was excluded as a target due to the presence of multiple gene copies, with different sequences in a single genome. Based on the above criteria, the mdh (malate dehydrogenase) gene was selected as a target for development of a microbial source tracking assay. The mdh assay was optimized to analyze a 150 bp fragment corresponding to residues G191 to R240 (helices H10 and H11) of the Mdh catalytic domain. 295 fecal isolates (52 horse, 50 deer, 72 dog, 52 seagull and 69 human isolates) were sequenced and analyzed. Target DNA sequences for isolates from horse, dog plus deer, and seagull formed identifiable groupings. Sequences from human isolates, aside from a low level (ca. 15%) human specific sequence, did not group; nevertheless, other hosts could be distinguished from human. Positive and negative predictive values for two- and three-way host comparisons ranged from 60% to 90% depending on the focus host. False positive rates were below 10%. Multiple E. coli isolates from individual fecal samples exhibited high levels of sequence homogeneity, i.e. typically only one to two mdh sequences were observed per up to five E. coli isolates from a single fecal sample. Among all isolates sequenced from fecal samples from each host, sequence homogeneity decreased in the following order: horse>dog>deer>human and gull. For in-library isolates, blind analysis of fecal isolates (n=12) from four hosts known to contain host specific target sequences was 100% accurate and 100% reproducible for both DNA sequence and host identification. For blind analysis of non-library isolates, 18/19 isolates (94.7%) matched one or more library sequences for the corresponding host. Ten of eleven geographical outlier fecal isolates from Florida had mdh sequences that were identical to in-library sequences for the corresponding host from California. The mdh assay was successfully applied to environmental isolates from an underground telephone vault in California, with 4 of 5 isolates matching sequences in the mdh library. 146 sequences of the 645bp mdh fragment from five host sources were translated into protein sequence and aligned. Seven unique Mdh protein sequences, which contained eight polymorphic sites, were identified. Six of the polymorphic sites were in the NAD+ binding domain and two were in the catalytic domain. All of the polymorphic sites were located in surface exposed regions of the protein. None of the non-silent mutations of the Mdh protein were in the 150bp mdh target. The advantages and disadvantages of the assay compared to established source tracking methods are discussed.  相似文献   

13.
The possible origin of beef contamination and genetic diversity of Escherichia coli populations in beef cattle, on carcasses and ground beef, was examined by using random amplification of polymorphic DNA (RAPD) and PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the fliC gene. E. coli was recovered from the feces of 10 beef cattle during pasture grazing and feedlot finishing and from hides, carcasses, and ground beef after slaughter. The 1,403 E. coli isolates (855 fecal, 320 hide, 153 carcass, and 75 ground beef) were grouped into 121 genetic subtypes by using the RAPD method. Some of the genetic subtypes in cattle feces were also recovered from hides, prechilled carcasses, chilled carcasses, and ground beef. E. coli genetic subtypes were shared among cattle at all sample times, but a number of transient types were unique to individual animals. The genetic diversity of the E. coli population changed over time within individual animals grazing on pasture and in the feedlot. Isolates from one animal (59 fecal, 30 hide, 19 carcass, and 12 ground beef) were characterized by the PCR-RFLP analysis of the fliC gene and were grouped into eight genotypes. There was good agreement between the results obtained with the RAPD and PCR-RFLP techniques. In conclusion, the E. coli contaminating meat can originate from cattle feces, and the E. coli population in beef cattle was highly diverse. Also, genetic subtypes can be shared among animals or can be unique to an animal, and they are constantly changing.  相似文献   

14.
This research validates a novel approach for source tracking based on denaturing gradient gel electrophoresis (DGGE) analysis of DNA extracted from Escherichia coli isolates. Escherichia coli from different animal sources and from river samples upstream from, at, and downstream of a combined sewer overflow were subjected to DGGE to determine sequence variations within the 16S-23S intergenic spacer region (ISR) of the rrnB ribosomal operon. The ISR was analyzed to determine if E. coli isolates from various animal sources could be differentiated from each other. DNA isolated from the E. coli animal sources was PCR amplified to isolate the rrnB operon. To prevent amplification of all 7 E. coli ribosomal operons by PCR amplification using universal primers, sequence-specific primers were utilized for the rrnB operon. Another primer set was then used to prepare samples of the 16S-23S ISR for DGGE. Comparison of PCR-DGGE results between human and animal sources revealed differences in the distribution and frequency of the DGGE bands produced. Human and Canada Goose isolates had the most unique distribution patterns and the highest percent of unique isolates and were grouped separately from all other animal sources. Method validation suggests that there are enough host specificity and genetic differences for use in the field. Field results at and around a combined sewer overflow indicate that this method can be used for microbial source tracking.  相似文献   

15.
The sensitivity of a test for cattle shedding Escherichia coli serogroup O26 was estimated using several fecal pats artificially inoculated at a range of concentrations with different E. coli O26 strains. The test involves the enrichment of fecal microflora in buffered peptone water, the selective concentration of E. coli O26 using antibody-coated immunomagnetic-separation beads, the identification of E. coli colonies on Chromocult tryptone bile X-glucuronide agar, and confirmation of the serogroup with E. coli serogroup O26-specific antisera using slide agglutination. The effective dose of E. coli O26 for an 80% test sensitivity (ED(80)) was 1.0 x 10(4) CFU g(-1) feces (95% confidence interval, 4.7 x 10(3) to 2.4 x 10(4)). Differences in test sensitivity between different E. coli O26 strains and fecal pats were also observed. Individual estimates of ED(80) for each strain and fecal pat combination ranged from 4.2 x 10(2) to 4.8 x 10(5) CFU g(-1). These results suggest that the test is useful for identifying individuals shedding a large number of E. coli O26 organisms or, if an appropriate number of individuals in a herd are sampled, for identifying affected herds. The study also provides a benchmark estimate of sensitivity that can be used to compare alternative tests for E. coli O26 and a methodological approach that can be applied to tests for other pathogenic members of the Enterobacteriaceae and other sample types.  相似文献   

16.
Electrophoretically demonstrable variation in 12 enzymes was studied in more than 1 600 isolates of Escherichia coli from human and animal sources and in 123 strains of the four species of Shigella. All 12 enzymes were polymorphic; and the number of allozymes (mobility variants), which were equated with alleles, averaged 9.3 per locus in E. coli. For Shigella species, the mean number of alleles was 2.9 per locus. Some 77% of the allozymes recorded in Shigella were shared with E. coli. A total of 302 unique genotypic combinations of alleles over the 12 loci (electrophoretic types, ETs) was distinguished, of which 279 represented E. coli and 23 were Shigella. Among electrophoretic types, mean allelic diversity per locus was 0.52 for E. coli and 0.29 for Shigella. It was estimated that there are, on the average, about 0.3 detectable codon differences per locus between pairs of strains of E. coli and Shigella, which is roughly equivalent to 1.2 amino acid differences per enzyme. Evidence that the enzyme loci studied are a random sample of the genome is provided by a significant positive correlation between estimates of genetic divergence between pairs of strains obtained by DNA reassociation tests and estimates of genetic distance between the same strains based on electrophoresis. A principal components analysis of allozyme profiles revealed that the 302 ETs fall into three overlapping clusters, reflecting strong non-random associations of alleles, largely at four loci. Each of the four ETs of E. coli that have been most frequently recovered from natural populations has an allozyme profile that is very similar to, or identical with, the hypothetical modal ET of one of the groups. ETs of Shigella fall into two of the groups. No biological significance can at present bbe attributed to the genetic structure revealed by Multilocus electrophoretic techniques. The electrophoretic data are fully compatible with other molecular and more conventional evidence of a close affinity between E. coli and Shigella, and they raise questions regarding the present assignments of certain strains to species. In support of evidence from DNA reassociation tests and serotyping, the present study suggests that S. sonnei is homogeneous in chromosomal genotype.  相似文献   

17.
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.  相似文献   

18.
The uidA gene, which encodes the beta-glucuronidase enzyme, was detected in 97.7% of 435 Escherichia coli isolates from treated and raw water sources by DNA-DNA hybridization; 92.4% of the strains expressed the translational product in 4-methylumbelliferyl-beta-D-glucuronide-containing media after reinoculation. Upon initial isolation from water samples, the minimal medium o-nitrophenyl-beta-D-galactopyranoside-4-methylum-belliferyl -beta-D-glucuronide preparations failed to detect more than 50% of the E. coli isolates that possessed uidA gene. Treated water gave the lowest recovery, with Colilert producing 26% positive samples and Coliquik producing 48% positive samples. There appears to be no relationship between the intensity of the autoradiographic signals of the uidA gene and the expression of beta-glucuronidase activity. Therefore, another variable such as physiological condition of the bacteria could be responsible for the nonexpression of the enzyme activity.  相似文献   

19.
Analyses of the distribution of virulence factors among different Escherichia coli pathotypes, including Shiga toxin-producing E. coli (STEC), may provide some insight into the mechanisms by which different E. coli strains cause disease and the evolution of distinct E. coli types. The aim of this study was to examine the DNA sequence of the gene for enterohemolysin, a plasmid-encoded toxin that readily causes the hemolysis of washed sheep erythrocytes, and to assess the distribution of enterohemolysin subtypes among E. coli isolates from various human and animal sources. The 2,997-bp ehxA gene was amplified from 227 (63.8%) of 356 stx- and/or eae-positive E. coli strains isolated from cattle and sheep and from 24 (96.0%) of 25 STEC strains isolated from humans with diarrheal disease. By using PCR and restriction fragment length polymorphism (RFLP) analysis of ehxA, six distinct PCR-RFLP types (A to F) were observed, with strains of subtypes A and C constituting 91.6% of all the ehxA-positive strains. Subtype A was associated mainly with ovine strains with stx only (P < 0.001), and subtype C was associated with bovine eae-positive strains (P < 0.001). Eleven ehxA alleles were fully sequenced, and the phylogenetic analysis indicated the presence of three closely related (>95.0%) ehxA sequence groups, one including eae-positive strains (subtypes B, C, E, and F) and the other two including mainly eae-negative STEC strains (subtypes A and D). In addition to being widespread among STEC strains, stx-negative, eae-positive strains (atypical enteropathogenic E. coli strains) isolated from cattle and sheep have similar ehxA subtypes and hemolytic activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号