首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The appearance of a forefoot push-off mechanism in the hominin lineage has been difficult to identify, partially because researchers disagree over the use of the external skeletal morphology to differentiate metatarsophalangeal joint functional differences in extant great apes and humans. In this study, we approach the problem by quantifying properties of internal bone architecture that may reflect different loading patterns in metatarsophalangeal joints in humans and great apes. High-resolution x-ray computed tomography data were collected for first and second metatarsal heads of Homo sapiens (n = 26), Pan paniscus (n = 17), Pan troglodytes (n = 19), Gorilla gorilla (n = 16), and Pongo pygmaeus (n = 20). Trabecular bone fabric structure was analyzed in three regions of each metatarsal head. While bone volume fraction did not significantly differentiate human and great ape trabecular bone structure, human metatarsal heads generally show significantly more anisotropic trabecular bone architectures, especially in the dorsal regions compared to the corresponding areas of the great ape metatarsal heads. The differences in anisotropy between humans and great apes support the hypothesis that trabecular architecture in the dorsal regions of the human metatarsals are indicative of a forefoot habitually used for propulsion during gait. This study provides a potential route for predicting forefoot function and gait in fossil hominins from metatarsal head trabecular bone architecture.  相似文献   

2.
The forefoot functions as the base of support during late stance, rotating about the dual-axis of the metatarsophalangeal joints. Previous research has shown that joint axis definition affects estimated joint moments about the forefoot. However, little is known about how metatarsophalangeal joint center definition affects estimated joint kinetics. This study compared moments about the metatarsophalangeal joint using four different defined joint centers. There was a significant difference (p < .001) in peak moments between joint center definitions, differing by up to 0.488 N-m/kg for the slow and 0.878 N-m/kg for the fast running speeds tested. Additionally, there was a significant difference (p < .001) for when peak plantar flexor moment occurred during the slower running condition. The more posteriorly oriented joint centers resulted in higher moments and earlier onset of the plantar flexor moment. In addition to careful modeling of the metatarsophalangeal joint axis, it is recommended that joint center definition should be considered as well.  相似文献   

3.
Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking.  相似文献   

4.
Changes in running strike pattern affect ankle and knee mechanics, but little is known about the influence of strike pattern on the joints distal to the ankle. The purpose of this study was to explore the effects of forefoot strike (FFS) and rearfoot strike (RFS) running patterns on foot kinematics and kinetics, from the perspectives of the midtarsal locking theory and the windlass mechanism. Per the midtarsal locking theory, we hypothesized that the ankle would be more inverted in early stance when using a FFS, resulting in decreased midtarsal joint excursions and increased dynamic stiffness. Associated with a more engaged windlass mechanism, we hypothesized that a FFS would elicit increased metatarsophalangeal joint excursions and negative work in late stance. Eighteen healthy female runners ran overground with both FFS and RFS patterns. Instrumented motion capture and a validated multi-segment foot model were used to analyze midtarsal and metatarsophalangeal joint kinematics and kinetics. During early stance in FFS the ankle was more inverted, with concurrently decreased midtarsal eversion (p < 0.001) and abduction excursions (p = 0.003) but increased dorsiflexion excursion (p = 0.005). Dynamic midtarsal stiffness did not differ (p = 0.761). During late stance in FFS, metatarsophalangeal extension was increased (p = 0.009), with concurrently increased negative work (p < 0.001). In addition, there was simultaneously increased midtarsal positive work (p < 0.001), suggesting enhanced power transfer in FFS. Clear evidence for the presence of midtarsal locking was not observed in either strike pattern during running. However, the windlass mechanism appeared to be engaged to a greater extent during FFS.  相似文献   

5.
Accurate measurement of ground reaction forces under discrete areas of the foot is important in the development of more advanced foot models, which can improve our understanding of foot and ankle function. To overcome current equipment limitations, a few investigators have proposed combining a pressure mat with a single force platform and using a proportionality assumption to estimate subarea shear forces and free moments. In this study, two adjacent force platforms were used to evaluate the accuracy of the proportionality assumption on a three segment foot model during normal gait. Seventeen right feet were tested using a targeted walking approach, isolating two separate joints: transverse tarsal and metatarsophalangeal. Root mean square (RMS) errors in shear forces up to 6% body weight (BW) were found using the proportionality assumption, with the highest errors (peak absolute errors up to 12% BW) occurring between the forefoot and toes in terminal stance. The hallux exerted a small braking force in opposition to the propulsive force of the forefoot, which was unaccounted for by the proportionality assumption. While the assumption may be suitable for specific applications (e.g. gait analysis models), it is important to understand that some information on foot function can be lost. The results help highlight possible limitations of the assumption. Measured ensemble average subarea shear forces during normal gait are also presented for the first time.  相似文献   

6.
The scaling of sixteen articular dimensions in the locomotor skeleton of hominoid primates is examined with special reference to a recently proposed model of geometric similarity. Seven species are included in the analysis (gorillas, common chimpanzees, bonobos, orang-utans, siamang, lar gibbons, and modern humans of European descent); all specimens are adult individuals of known body mass (N=87). No significant sexual dimorphism in the scaling of joint size was observed. Overal results are compatible with the biomechanical model predictions of isometry, and lend additional support to the suggestion that joint stresses are of the same order of magnitude in animals differing vastly in body size and locomotor adaptations. The hindlimb and lumbosacral joints of humans, however, are consistently much larger than expected for their body mass. Full-time bipedality obviously precludes the sharing of weight support and propulsion with the forelimbs, and this fundamental difference is accurately reflected in the relative joint size of humans.  相似文献   

7.
Z. Lu  D.J. Meldrum  Y. Huang  J. He  E.E. Sarmiento 《HOMO》2011,62(6):389-401
Bipedalism has long been recognized as the seminal adaptation of the hominin radiation and thus used to distinguish hominins from great ape fossils. Notwithstanding preconceptions and varied interpretations, the distinctive features of the modern human foot and accompanying striding gait, appear to be recent innovations that are largely absent in the earliest facultative bipeds. These distinctive features are mainly components of fixed longitudinal and transverse pedal arches, and of a uniquely derived hallucal metatarsophalangeal joint. They enhance ankle joint plantar flexor function and accommodate localized peak plantar pressures at the medial ball during terminal stance. To date, the paleontological record has yielded very little of the hominin foot, especially of the Middle Pleistocene hominins. New specimens from this time interval should help provide insights into the timing and pattern of what appears to be a mosaic pattern of evolution of the modern human foot features. Here we describe the fossil hominin foot skeleton recovered from the Jinniushan site, Liaoning Province, People's Republic of China. It affords a singular glimpse of the pedal morphology of a late Middle Pleistocene hominin (c.f. Homo heidlebergensis). Dated to 200 ka or older, this foot offers the earliest evidence for increased stability of the medial longitudinal arch, while retaining a number of primitive features apparently characteristic of robust premodern hominins, including lower arches and a less stable hallucal metatarsophalangeal joint (medial ball) than in modern humans. These features reflect different foot capabilities and suggest the bipedal stride of the Jinniushan hominin differed subtlety from that of modern humans.  相似文献   

8.
Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.  相似文献   

9.
A multi-segment kinematic model of the foot was developed for use in a gait analysis laboratory. The foot was divided into hindfoot, talus, midfoot and medial and lateral forefoot segments. Six functional joints were defined: ankle and subtalar joints, frontal and transverse plane motions of the hindfoot relative to midfoot, supination/pronation twist of the forefoot relative to midfoot and medial longitudinal arch height-to-length ratio. Twelve asymptomatic subjects were tested during barefoot walking with a six-camera optical stereometric system and auto-reflective markers organized in triads. Repeatability of the joint motions was tested using coefficients of multiple correlation. Ankle and subtalar joint motions and twisting of the forefoot were most repeatable. Hindfoot motions were least repeatable both within-subjects and between-subjects. Hindfoot and forefoot pronation in the frontal plane was found to coincide with dropping of the medial longitudinal arch between early to mid-stance, followed by supination and rising of the arch in late stance and swing phase. This multi-segment foot model addresses an unfortunate shortcoming in current gait analysis practice-the inability to measure motion within the foot. Such measurements are crucial if gait analysis is to remain relevant in the orthopaedic and rehabilitative treatment of the foot and ankle.  相似文献   

10.
Multibody simulations of human motion require representative models of the anatomical structures. A model that captures the complexity of the foot is still lacking. In the present work, two detailed 3D multibody foot-ankle models generated based on CT scans using a semi-automatic tool are described. The proposed models consists of five rigid segments (talus, calcaneus, midfoot, forefoot and toes), connected by five joints (ankle, subtalar, midtarsal, tarsometatarsal and metatarsophalangeal), one with 15DOF and the other with 8DOF. The calculated kinematics of both models were evaluated using gait trials and compared against literature, both presenting realistic results. An inverse dynamic analysis was performed for the 8DOF model, again presenting feasible dynamic results.  相似文献   

11.
Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years.  相似文献   

12.
This study characterizes the stiffness of the human forefoot during running. The forefoot stiffness, defined as the ratio of ground reaction moment to angular deflection of the metatarsophalangeal joint, is measured for subjects running barefoot. The joint deflection is obtained from video data, while the ground reaction moment is obtained from force plate and video data. The experiments show that during push-off, the forefoot stiffness rises sharply and then decreases steadily, showing that the forefoot behaves not as a simple spring, but rather as an active mechanism that exhibits a highly time-dependent stiffness. The forefoot stiffness is compared with the bending stiffness of running shoes. For each of four shoes tested, the shoe stiffness is relatively constant and generally much lower than the mean human forefoot stiffness. Since forefoot stiffness and shoe bending stiffness act in parallel (i.e., are additive), the total forefoot stiffness of the shod foot is dominated by that of the human foot.  相似文献   

13.
Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and cross-species transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens.  相似文献   

14.
Metatarsophalangeal joints of Australopithecus afarensis   总被引:2,自引:0,他引:2  
Metatarsophalangeal joints from African pongids, modern humans, and Australopithecus afarensis are compared to investigate the anatomical and mechanical changes that accompanied the transition to terrestrial bipedality. Features analyzed include the shape and orientation of the metatarsal heads, excursion of the metatarsophalangeal joints, and orientation of the basal articular surface of the proximal phalanges. These features unequivocally segregate quadrupedal pongids and bipedal hominids and demonstrate a clear adaptation to terrestrial bipedality in the Hadar pedal skeleton.  相似文献   

15.
The copulatory activities of bonobos (Pan paniscus) of Wamba, Zaire, were compared with those of chimpanzees (P. troglodytes schweinfurthii) of Mahale, Tanzania. The copulation rates of adult male bonobos were equal to or lower than those of adult male chimpanzees. The copulation rates of adult female bonobos were approximately equal to those of adult female chimpanzees who were in maximal genital swelling, but it should be much higher than those of the adult female chimpanzees throughout the birth interval. The copulation rates of adolescent male bonobos were lower than those of adolescent male chimpanzees, whereas the copulation rates of adolescent female bonobos were much higher than those of adolescent female chimpanzees. It was suggested that the bonobos of Wamba did not copulate more promiscuously than did the chimpanzees of Mahale. The female bonobos may show “receptivity”, whereas female chimpanzees may show rather “proceptivity”.  相似文献   

16.
The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations of 8.81° at the ankle, and a decreased metatarsophalangeal joint extension of 4.65°. The resulting peak pressure reductions at individual MTHs, however, may be site-specific and possibly dependent on foot structure, such as intrinsic alignment of the metatarsals. The relationships between muscular control, internal joint movements, and plantar load distributions are envisaged to have important clinical implications on tendo-Achilles lengthening procedures, and to provide surgeons with an understanding of the underlying mechanism for relieving forefoot pressure in diabetic patients suffering from ankle equinus contracture.  相似文献   

17.
In humans, the distribution of yawn contagion is shaped by social closeness with strongly bonded pairs showing higher levels of contagion than weakly bonded pairs. This ethological finding led the authors to hypothesize that the phenomenon of yawn contagion may be the result of certain empathic abilities, although in their most basal form. Here, for the first time, we show the capacity of bonobos (Pan paniscus) to respond to yawns of conspecifics. Bonobos spontaneously yawned more frequently during resting/relaxing compared to social tension periods. The results show that yawn contagion was context independent suggesting that the probability of yawning after observing others'' yawns is not affected by the propensity to engage in spontaneous yawns. As it occurs in humans, in bonobos the yawing response mostly occurred within the first minute after the perception of the stimulus. Finally, via a Linear Mixed Model we tested the effect of different variables (e.g., sex, rank, relationship quality) on yawn contagion, which increased when subjects were strongly bonded and when the triggering subject was a female. The importance of social bonding in shaping yawn contagion in bonobos, as it occurs in humans, is consistent with the hypothesis that empathy may play a role in the modulation of this phenomenon in both species. The higher frequency of yawn contagion in presence of a female as a triggering subject supports the hypothesis that adult females not only represent the relational and decisional nucleus of the bonobo society, but also that they play a key role in affecting the emotional states of others.  相似文献   

18.
Degenerative joint disease is investigated in the spine and major peripheral joints (shoulder, elbow, hip and knee) in samples of chimpanzees (Pan troglodytes schweinfurthii; P. troglodytes troglodytes), lowland gorillas (Gorilla gorilla gorilla), and bonobos (P. paniscus). The P. troglodytes schweinfurthii sample comes from Gombe National Park, Tanzania, while the other samples are derived from museum materials originally collected in west/central Africa. Total data for African ape samples include 5807 surfaces for ascertainment of vertebral osteophytosis, 12,479 surfaces for determination of spinal osteoarthritis, and 1211 joints for evaluation of peripheral joint osteoarthritis. All apes display significantly less spinal disease than in a comparable human sample, and these differences are most likely a consequence of human biomechanical adaptations for bipedal locomotion. Apes are also generally less involved in the major peripheral joints than are humans, but human groups are themselves highly variable in prevalence of peripheral osteoarthritis. These data agree with other findings of low prevalence of degenerative joint prevalence in free-ranging apes, but contrast markedly with evidence derived from colony-reared Old World monkeys.  相似文献   

19.
Capuchin monkeys are known to use bipedalism when transporting food items and tools. The bipedal gait of two capuchin monkeys in the laboratory was studied with three-dimensional kinematics. Capuchins progress bipedally with a bent-hip, bent-knee gait. The knee collapses into flexion during stance and the hip drops in height. The knee is also highly flexed during swing to allow the foot which is plantarflexed to clear the ground. The forefoot makes first contact at touchdown. Stride frequency is high, and stride length and limb excursion low. Hind limb retraction is limited, presumably to reduce the pitch moment of the forward-leaning trunk. Unlike human bipedalism, the bipedal gait of capuchins is not a vaulting gait, and energy recovery from pendulum-like exchanges is unlikely. It extends into speeds at which humans and other animals run, but without a human-like gait transition. In this respect it resembles avian bipedal gaits. It remains to be tested whether energy is recovered through cyclic elastic storage and release as in bipedal birds at higher speeds. Capuchin bipedalism has many features in common with the facultative bipedalism of other primates which is further evidence for restrictions on a fully upright striding gait in primates that transition to bipedalism. It differs from the facultative bipedalism of other primates in the lack of an extended double-support phase and short aerial phases at higher speeds that make it a run by kinematic definition. This demonstrates that facultative bipedalism of quadrupedal primates need not necessarily be a walking gait.  相似文献   

20.
This paper presents spatiotemporal gait parameters of arboreal locomotion in the colobine Rhinopithecus bieti in its natural habitat. While adult females used exclusively either extended-elbow vertical climbing or pulse climbing, the much larger adult males preferred the less demanding flexed-elbow vertical climbing on thin trees or on trunks with handholds. If sex-specific differences are taken into consideration, the differences between flexed-elbow and extended-elbow vertical climbing in Rhinopithecus parallel those observed in Ateles. During flexed-elbow vertical climbing, the gait parameters of R. bieti are very similar to those of spider monkeys (Ateles fusciceps) or bonobos (Pan paniscus). Maximum limb joint excursions also lie in the range of hominoids and atelines and are clearly larger than in Macaca fuscata. It seems likely that climbing kinematics may differ more between Rhinopithecus and macaques than between Rhinopithecus and hominoids or atelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号