共查询到20条相似文献,搜索用时 0 毫秒
1.
Computational model of neural network is used for prediction of secondary structure of globular proteins of known sequence. In contrast to earlier works some information about expected tertiary interactions were built in into the neural network. As a result the prediction accuracy was improved by 3% to 5%. Possible applications of this new approach are briefly discussed. 相似文献
2.
Background
Protein secondary structure prediction method based on probabilistic models such as hidden Markov model (HMM) appeals to many because it provides meaningful information relevant to sequence-structure relationship. However, at present, the prediction accuracy of pure HMM-type methods is much lower than that of machine learning-based methods such as neural networks (NN) or support vector machines (SVM). 相似文献3.
In this paper we propose constructing an improved two-level neural network to predict protein secondary structure. Firstly, we code the whole protein composition information as the inputs to the first-level network besides the evolutionary information. Secondly, we calculate the reliability score for each residue position based on the output of the first-level network, and the role of the second-level network is to take full advantage of the residues with a higher reliability score to impact the neighboring residues with a lower one for improving the whole prediction accuracy. Thirdly, considering it is indeed a problem that the target protein can be lost in the multiple sequence alignment we propose to code single sequence into the second-level network. The experimental results show that our proposed method can efficiently improve the prediction accuracy. 相似文献
4.
The back-propagation neural network algorithm is a commonly used method for predicting the secondary structure of proteins. Whilst popular, this method can be slow to learn and here we compare it with an alternative: the cascade-correlation architecture. Using a constructive algorithm, cascade-correlation achieves predictive accuracies comparable to those obtained by back-propagation, in shorter time. 相似文献
5.
A priori knowledge of secondary structure content can be of great use in theoretical and experimental determination of protein structure. We present a method that uses two computer-simulated neural networks placed in "tandem" to predict the secondary structure content of water-soluble, globular proteins. The first of the two networks, NET1, predicts a protein's helix and strand content given information about the protein's amino acid composition, molecular weight and heme presence. Because NET1 contained more adjustable parameters (network weights) than learning examples, this network experienced problems with memorization, which is the inability to generalize onto new, never-seen-before examples. To overcome this problem, we designed a second network, NET2, which learned to determine when NET1 was in a state of generalization. Together, these two networks produce prediction errors as low as 5.0% and 5.6% for helix and strand content, respectively, on a set of protein crystal structures bearing little homology to those used in network training. A comparison between three other methods including a multiple linear regression analysis, a non-hidden-node network analysis and a secondary structure assignment analysis reveals that our tandem neural network scheme is, indeed, the best method for predicting secondary structure content. The results of our analysis suggest that the knowledge of sequence information is not necessary for highly accurate predictions of protein secondary structure content. 相似文献
6.
In this paper(1) we present a novel framework for protein secondary structure prediction. In this prediction framework, firstly we propose a novel parameterized semi-probability profile, which combines single sequence with evolutionary information effectively. Secondly, different semi-probability profiles are respectively applied as network input to predict protein secondary structure. Then a comparison among these different predictions is discussed in this article. Finally, na?ve Bayes approaches are used to combine these predictions in order to obtain a better prediction performance than individual prediction. The experimental results show that our proposed framework can indeed improve the prediction accuracy. 相似文献
7.
In this study we present an accurate secondary structure prediction procedure by using a query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable. Proteins 27:329–335, 1997. © 1997 Wiley-Liss, Inc. 相似文献
8.
神经网络在蛋白质二级结构预测中的应用 总被引:3,自引:0,他引:3
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。 相似文献
9.
Improved performance in protein secondary structure prediction by inhomogeneous score combination. 总被引:5,自引:0,他引:5
MOTIVATION: In many fields of pattern recognition, combination has proved efficient to increase the generalization performance of individual prediction methods. Numerous systems have been developed for protein secondary structure prediction, based on different principles. Finding better ensemble methods for this task may thus become crucial. Furthermore, efforts need to be made to help the biologist in the post-processing of the outputs. RESULTS: An ensemble method has been designed to post-process the outputs of discriminant models, in order to obtain an improvement in prediction accuracy while generating class posterior probability estimates. Experimental results establish that it can increase the recognition rate of protein secondary structure prediction methods that provide inhomogeneous scores, even though their individual prediction successes are largely different. This combination thus constitutes a help for the biologist, who can use it confidently on top of any set of prediction methods. Moreover, the resulting estimates can be used in various ways, for instance to determine which areas in the sequence are predicted with a given level of reliability. AVAILABILITY: The prediction is freely available over the Internet on the Network Protein Sequence Analysis (NPS@) WWW server at http://pbil.ibcp.fr/NPSA/npsa_server.ht ml. The source code of the combiner can be obtained on request for academic use. 相似文献
10.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained. 相似文献
11.
GOR V server for protein secondary structure prediction 总被引:3,自引:0,他引:3
SUMMARY: We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful methods, its online unavailability has been a deterrent to its popularity. Here, we remedy this situation by creating the GOR V server. 相似文献
12.
We present a new method for protein secondary structure prediction, based on the recognition of well-defined pentapeptides, in a large databank. Using a databank of 635 protein chains, we obtained a success rate of 68.6%. We show that progress is achieved when the databank is enlarged, when the 20 amino acids are adequately grouped in 10 sets and when more pentapeptides are attributed one of the defined conformations, alpha-helices or beta-strands. The analysis of the model indicates that the essential variable is the number of pentapeptides of well-defined structure in the database. Our model is simple, does not rely on arbitrary parameters and allows the analysis in detail of the results of each chosen hypothesis. 相似文献
13.
Hybrid system for protein secondary structure prediction. 总被引:13,自引:0,他引:13
We have developed a hybrid system to predict the secondary structures (alpha-helix, beta-sheet and coil) of proteins and achieved 66.4% accuracy, with correlation coefficients of C(coil) = 0.429, C alpha = 0.470 and C beta = 0.387. This system contains three subsystems ("experts"): a neural network module, a statistical module and a memory-based reasoning module. First, the three experts independently learn the mapping between amino acid sequences and secondary structures from the known protein structures, then a Combiner learns to combine automatically the outputs of the experts to make final predictions. The hybrid system was tested with 107 protein structures through k-way cross-validation. Its performance was better than each expert and all previously reported methods with greater than 0.99 statistical significance. It was observed that for 20% of the residues, all three experts produced the same but wrong predictions. This may suggest an upper bound on the accuracy of secondary structure predictions based on local information from the currently available protein structures, and indicate places where non-local interactions may play a dominant role in conformation. For 64% of the residues, at least two experts were the same and correct, which shows that the Combiner performed better than majority vote. For 77% of the residues, at least one expert was correct, thus there may still be room for improvement in this hybrid approach. Rigorous evaluation procedures were used in testing the hybrid system, and statistical significance measures were developed in analyzing the differences among different methods. When measured in terms of the number of secondary structures (rather than the number of residues) that were predicted correctly, the prediction produced by the hybrid system was also better than those of individual experts. 相似文献
14.
Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. 相似文献
15.
An algorithm has been developed to improve the success rate in the prediction of the secondary structure of proteins by taking into account the predicted class of the proteins. This method has been called the 'double prediction method' and consists of a first prediction of the secondary structure from a new algorithm which uses parameters of the type described by Chou and Fasman, and the prediction of the class of the proteins from their amino acid composition. These two independent predictions allow one to optimize the parameters calculated over the secondary structure database to provide the final prediction of secondary structure. This method has been tested on 59 proteins in the database (i.e. 10,322 residues) and yields 72% success in class prediction, 61.3% of residues correctly predicted for three states (helix, sheet and coil) and a good agreement between observed and predicted contents in secondary structure. 相似文献
16.
MOTIVATION: Prediction of protein secondary structure provides information that is useful for other prediction methods like fold recognition and ab initio 3D prediction. A consensus prediction constructed from the output of several methods should yield more reliable results than each of the individual methods. METHOD: We present an approach that reveals subtle but systematic differences in the output of different secondary structure prediction methods allowing the derivation of coherent consensus predictions. The method uses a machine learning technique that builds decision trees from existing data. RESULTS: The first results of our analysis show that consensus prediction of protein secondary structure may be improved both quantitatively and qualitatively. 相似文献
17.
Zheng WM 《Journal of bioinformatics and computational biology》2004,2(2):333-342
Simple hidden Markov models are proposed for predicting secondary structure of a protein from its amino acid sequence. Since the length of protein conformation segments varies in a narrow range, we ignore the duration effect of length distribution, and focus on inclusion of short range correlations of residues and of conformation states in the models. Conformation-independent and -dependent amino acid coarse-graining schemes are designed for the models by means of proper mutual information. We compare models of different level of complexity, and establish a practical model with a high prediction accuracy. 相似文献
18.
Review: protein secondary structure prediction continues to rise 总被引:15,自引:0,他引:15
Rost B 《Journal of structural biology》2001,134(2-3):204-218
Methods predicting protein secondary structure improved substantially in the 1990s through the use of evolutionary information taken from the divergence of proteins in the same structural family. Recently, the evolutionary information resulting from improved searches and larger databases has again boosted prediction accuracy by more than four percentage points to its current height of around 76% of all residues predicted correctly in one of the three states, helix, strand, and other. The past year also brought successful new concepts to the field. These new methods may be particularly interesting in light of the improvements achieved through simple combining of existing methods. Divergent evolutionary profiles contain enough information not only to substantially improve prediction accuracy, but also to correctly predict long stretches of identical residues observed in alternative secondary structure states depending on nonlocal conditions. An example is a method automatically identifying structural switches and thus finding a remarkable connection between predicted secondary structure and aspects of function. Secondary structure predictions are increasingly becoming the work horse for numerous methods aimed at predicting protein structure and function. Is the recent increase in accuracy significant enough to make predictions even more useful? Because the recent improvement yields a better prediction of segments, and in particular of beta strands, I believe the answer is affirmative. What is the limit of prediction accuracy? We shall see. 相似文献
19.
Amino acid sequence patterns have been used to identify the location of turns in globular proteins [Cohen et al. (1986) Biochemistry 25, 266-275]. We have developed sequence patterns that facilitate the prediction of helices in all helical proteins. Regular expression patterns recognize the component parts of a helix: the amino terminus (N-cap), the core of the helix (core), and the carboxy terminus (C-cap). These patterns recognize the core features of helices with a 95% success rate and the N- and C-capping features with success rates of 56% and 48%, respectively. A metapattern language, ALPPS, coordinates the recognition of turns and helical components in a scheme that predicts the location and extent of alpha-helices. On the basis of raw residue scoring, a 71% success rate is observed. By focusing on the recognition of core helical features, we achieve a 78% success rate. Amended scoring procedures are presented and discussed, and comparisons are made to other predictive schemes. 相似文献
20.
PHD-an automatic mail server for protein secondary structure prediction 总被引:30,自引:0,他引:30
By the middle of 1993, >30 000 protein sequences had beenlisted. For 1000 of these, the three-dimensional (tertiary)structure has been experimentally solved. Another 7000 can bemodelled by homology. For the remaining 21 000 sequences, secondarystructure prediction provides a rough estimate of structuralfeatures. Predictions in three states range between 35% (random)and 88% (homology modelling) overall accuracy. Using informationabout evolutionary conservation as contained in multiple sequencealignments, the secondary structure of 4700 protein sequenceswas predicted by the automatic e-mail server PHD. For proteinswith at least one known homologue, the method has an expectedoverall three-state accuracy of 71.4% for proteins with at leastone known homologue (e on 126 unique protein chains). 相似文献