首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of nicotinamide and flavin coenzymes on the 5-lipoxygenase activity has been determined in cell-free extracts from rat polymorphonuclear leukocytes. 5-lipoxygenase was assayed in the presence of 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which caused a 3 to 4-fold stimulation in the maximal conversion of radiolabeled arachidonic acid to 5-hydroxyeicosatetraenoic acid (5-HETE) and 5,12-dihydroxyeicosatetraenoic acid (5,12-di-HETE). Addition of FMN or FAD to the assay mixture had little effect on the 5-lipoxygenase activity and caused inhibition only at high concentrations (IC50 greater than 100 microM). NADH markedly potentiated the inhibition of lipoxygenase by flavins with a 100-fold decrease in the FMN concentration required to inhibit the enzyme (IC50 approximately equal to 2 microM). Similar effects were observed for FAD although this flavin derivative was slightly less potent than FMN (IC50 congruent to 10 microM). NADH could be substituted by NADPH but not by NAD or NADP, indicating that the inhibition was not due to the production of the oxidized forms of these co-factors. These results show that the 5-lipoxygenase activity is stimulated by 5-HPETE and inhibited by flavin-dependent redox transformations.  相似文献   

2.
In order to identify regulatory steps in leukotriene synthesis, the biochemical characteristics of a 5-lipoxygenase activity in the 100,000 xg supernatant from sonicates of cells of an IL-3 dependent murine mast cell clone, MC-9 were determined. Principal products from exogenous 14C-arachidonic acid were identified as leukotriene B4, diastereomeric 5,12-dihydroxy-eicossatetraenoic acids (5.12 diHETEs) 5-hydroperoxy and hydroxyeicosatetraenoic acids (5-HPETE and 5-HEYE) as well as a novel metabolite 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE). The lipoxygenase activity had a pH optimum of 6.9 and was highly dependent upon added Ca++. The effective Ca++ concentration for 50 per cent activation (EC50) was 3 uM. Activity was also stimulated by ATP (EC50 = 160 uM). The cytosolic 5-lipoxygenase activity exhibited a biphasic concentration dependence for arachidonic acid with maximum product formation occurring at 35 uM (ca. 20 nmole/mg/4 min). The lipoxygenase activity exhibited apparent lag phase kinetics which were more pronounced at low protein concentrations (0.3 mg/ml). In addition, the lag phase was greatly accentuated by the addition of a hydroperoxide scavenging system consisting of glutathione (1 mM) plus glutathione peroxidase (0.4 unit/ml). In contrast, addition of any several hydroperoxides, i.e. 5-,8-,9- or 15-HPETE (EC50 ca. 1 uM), but not the corresponding alcohols (5-HETE and 15-HETE), shortened the lag phase. These results show that the 5-lipoxygenase requires hydroperoxide for activation and that cellular level of hydroperoxides may be an important factor regulating leukotriene synthesis.  相似文献   

3.
4.
Lysosomal phospholipases play a critical role for degradation of cellular membranes after their lysosomal segregation. We investigated the regulation of lysosomal phospholipase A1 by cholesterol, phosphatidylethanolamine, and negatively-charged lipids in correlation with changes of biophysical properties of the membranes induced by these lipids. Lysosomal phospholipase A1 activity was determined towards phosphatidylcholine included in liposomes of variable composition using a whole-soluble lysosomal fraction of rat liver as enzymatic source. Phospholipase A1 activity was then related to membrane fluidity, lipid phase organization and membrane potential as determined by fluorescence depolarization of DPH, 31P NMR and capillary electrophoresis. Phospholipase A1 activity was markedly enhanced when the amount of negatively-charged lipids included in the vesicles was increased from 10 to around 30% of total phospholipids and the intensity of this effect depended on the nature of the acidic lipids used (ganglioside GM1相似文献   

5.
In animal cells arachidonic acid is metabolized via the 5-, 12- and 15-lipoxygenase pathways. The kinetic mechanism of action of plant (soya) and animal (reticulocyte) 15-lipoxygenases is now well established. 5-Lipoxygenase possesses, in all probability, the most complex mechanism of activity regulation. At present several effectors of neutrophil 5-lipoxygenase, both cytosolic and membrane-bound ones, have been identified. The molecular and kinetic mechanisms of action of the enzyme are still open to question. A kinetic scheme of regulation of synthesis of arachidonic acid 5-lipoxygenase metabolites which does not exclude the presence of two binding sites on the enzyme molecule, is proposed. Within the framework of this kinetic scheme the enzyme activator complex may be the active form of the enzyme. There is evidence that the curve for the time dependence of 5-HETE accumulation in neutrophils stimulated by the Ca2+ ionophore A23187 has a maximum, while the corresponding curve for the LTB4 accumulation is a curve with saturation. It was shown that an increase in the concentration of exogenous arachidonate induces the synthesis of 5-HETE, whereas the concentration of LTB4 remains practically unchanged. The results of mathematical analysis of the above kinetic scheme and a comparison of experimental and calculated values suggest that the reaction effector, Ca2+, plays a crucial regulatory role in the observed kinetic dependencies reflecting the formation of two sequential products of 5-lipoxygenase oxidation of arachidonate. In this way Ca2+ strongly influences the first step of the reaction, i.e., 5-HETE formation; its effect on the second reaction step (5-HETE conversion into LTA4) is far less apparent.  相似文献   

6.
A method is reported for the modification of lipids in situ in chloroplast membrane by which a homogeneous, water-soluble catalyst Pd(QS)2 (QS, sulphonated alizarine; C14H6O7NaS) is incorporated into the thylakoids of isolated chloroplast. The catalyst itself did not affect the photosynthetic activity but caused an extensive loss of unsaturated fatty acids in the presence of hydrogen gas. The polyunsaturated fatty acids were hydrogenated at a faster rate than the monoenoic acids. During hydrogenation the orientational ordering of membrane lipids, as measured with the C-12 positional isomer of spin-labelled stearic acid, displayed a slight increase in agreement with the alterations in membrane composition. Progressive saturation of double bonds of lipids primarily inhibits electron transport between the photosystems followed by the inhibition of electron flow around photosystem II. Photosystem I electron transport was not inhibited even by 50% fatty acid hydrogenation. We suggest that using Pd(QS)2 catalyst for thylakoid hydrogenation offers an excellent technique to study the role of various unsaturated fatty acids in the regulation of membrane fluidity and photosynthetic processes.  相似文献   

7.
Alterations in the state of the membrane lipids affect human red cell K+ transport. Depletion of membrane cholesterol by 29–34% significantly inhibited both total K+ influx and ouabain-sensitive K+ influx. Addition of the hydrophobic anesthetic, chlorpromazine, in concentration from 2 · 10−5 to 2 · 10−4 M increased both total K+ influx and ouabain-sensitive K+ influx. In each case the effect on both processes was almost identical which indicates a linkage between K+ “pump” and “leak”. Further, these results demonstrate that red cell K+ transport can be modulated by local conditions in the micro-environment of the transport system.  相似文献   

8.
Modulation of bovine milk galactosyltransferase activity by lipids   总被引:3,自引:0,他引:3  
The effect of lipids singly and in combination on the ability of galactosyltransferase to transfer galactose to N-acetyl-D-glucosamine-forming lactosamine and to glucose forming lactose has been studied. Lecithins, as egg phosphatidylcholine (PC), or saturated as dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine stimulated the activity of the enzyme to form lactosamine to different extents. Egg PC produced the greatest stimulation of all the lecithins tested. Egg phosphatidic acid (PA) inhibited the activity of the enzyme at very low concentrations of lipid. In mixed vesicles of gel phase or liquid crystalline phase lecithins and egg PA, the acidic lipid was able to overcome the stimulation produced by the lecithins. The dominant effect of the head group was demonstrated by the effects of gel phase dimyristoylphosphatidic acid (DMPA). In mixtures with PC, DMPA also was able to inhibit the enzyme for lactosamine synthesis but higher concentrations of the gel phase DMPA were required for inhibition compared to the liquid crystalline PA. Although the head group appeared to dominate the inhibition, the nature of the acyl chains of the lipid played a secondary role at least. Other acid lipids, phosphatidylserine (PS) and phosphatidylinositol (PI) were much less effective than PA. PS alone inhibited the activity of the enzyme. However, in mixed lipids (PS and egg PC), PS was unable to reverse the stimulation produced by PC while PC was able to reverse the inhibition produced by PS. PI alone had no effect on the enzyme activity. In mixtures with egg PC, the stimulating effect of PC was dominant. In the lactose synthetase reaction, the effect of lipids was similar to that of the lactosamine synthetase, i.e. PC stimulated and PA inhibited activity and in mixtures of PC and PA, the inhibitory effect of PA was dominant.  相似文献   

9.
The influence of the glutathione status of human polymorphonuclear leukocytes (PMN) on 5-lipoxygenase activity was studied by treating cells with increasing concentrations of 1-chloro-2,4-dinitrobenzene (Dnp-Cl) or azodicarboxylic acid bis(dimethylamide) (Diamide). Subsequent incubation with arachidonate resulted in an up to tenfold-stimulated formation of 5-hydroxyeicosatetraenoic acid, leukotriene B4, leukotriene B4 isomers and omega-hydroxyleukotriene B4. Higher concentrations of the GSH reagents were inhibitory. At maximal stimulation by Dnp-Cl, 5-hydroperoxyeicosatetraenoic acid started to be built up at the expense of 5-HETE at glutathione levels which were diminished by about 50% compared to resting cells. No increase in cytosolic Ca2+ could be measured under these conditions by the fura-2 method. In PMN homogenates Dnp-Cl and Diamide were without effect and even caused inhibition when 5-lipoxygenase was stimulated by Ca2+ and ATP. 15-Lipoxygenase was either unchanged in the case of Diamide, or even increased after pretreatment with Dnp-Cl. The results allow us to conclude that 5-lipoxygenase activity in intact PMN is regulated not only by Ca2+ but in a complex manner also by the glutathione redox status. Conditions of oxidative stress increase the activity which may reflect the in vivo situation under phagocytosis and oxidative burst.  相似文献   

10.
Human 5-lipoxygenase (5-LO) can form dimers as shown here via native gel electrophoresis, gel filtration chromatography and LILBID (laser induced liquid bead ion desorption) mass spectrometry. After glutathionylation of 5-LO by diamide/glutathione treatment, dimeric 5-LO was no longer detectable and 5-LO almost exclusively exists in the monomeric form which showed full catalytic activity. Incubation of 5-LO with diamide alone led to a disulfide-bridged dimer and to oligomer formation which displays a strongly reduced catalytic activity. The bioinformatic analysis of the 5-LO surface for putative protein-protein interaction domains and molecular modeling of the dimer interface suggests a head to tail orientation of the dimer which also explains the localization of previously reported ATP binding sites. This interface domain was confirmed by the observation that 5-LO dimer formation and inhibition of activity by diamide was largely prevented when four cysteines (C159S, C300S, C416S, C418S) in this domain were mutated to serines.  相似文献   

11.
5-Lipoxygenase (5-LO) is a key enzyme involved into biosynthesis of leukotrienes (LTs), mediating the host defense system, and acting simultaneously as inflammatory agents. In this work the effect of anionic cholesterol derivatives on 5-LO activity has been investigated. Cholesterol sulfate activates human polymorphonuclear leukocytes (PMNL) and stimulates their adhesion to endothelium and collagen. Cholesterol sulfate and cholesterol phosphate suppressed leukotriene production in PMNL and in rat basophil leukemia (RBL-1) cell line as well as in homogenates of these cells. Kinetic characteristics of the effect of anionic cholesterol derivatives on leukotriene synthesis have been obtained. In all experiments cholesterol phosphate (charge-2) was shown to be more potent inhibitor than cholesterol sulfate (charge-1). We believe that this fact highlights the importance of negatively charged ester groups for suppression of 5-LO activity.  相似文献   

12.
13.
Regulation of 5-lipoxygenase enzyme activity   总被引:3,自引:0,他引:3  
In this article, regulation of human 5-lipoxygenase enzyme activity is reviewed. First, structural properties and enzyme activities are described. This is followed by the activating factors: Ca2+, membranes, ATP, and lipid hydroperoxide. Also, studies on phosphorylation of 5-lipoxygenase and nuclear localization sequences are reviewed.  相似文献   

14.
The sulfhydryl reactant N-ethylmaleimide (NEM) stimulates the release and cyclooxygenase metabolism of arachidonic acid in rat alveolar macrophages. Because both 5-lipoxygenation and leukotriene (LT) C4 synthesis represent sulfhydryl-dependent steps in the 5-lipoxygenase pathway, we examined the effect of NEM on 5-lipoxygenase, as well as cyclooxygenase, metabolism in resting and agonist-stimulated cells by reverse-phase high performance liquid chromatography and radioimmunoassay. NEM at 5-10 microM stimulated the synthesis of thromboxane, but not prostaglandin E2 or the 5-lipoxygenase products LTC4, LTB4, or 5-hydroxyeicosatetraenoic acid from endogenously released arachidonate. In the presence of exogenous fatty acid, however, NEM stimulated the synthesis of large quantities of LTB4. The effect of NEM on arachidonate metabolism stimulated by the calcium ionophore A23187 and the particulate zymosan was also investigated. NEM augmented arachidonate release and thromboxane synthesis stimulated by A23187 but inhibited A23187-induced LTC4 synthesis with an IC50 of approximately 4.3 microM. This inhibitory effect closely paralleled the ability of NEM to deplete intracellular glutathione (IC50 approximately 4.3 microM). Preincubation with the intracellular cysteine delivery agent L-2-oxothiazolidine-4-carboxylate augmented intracellular glutathione concentration and A23187-stimulated LTC4 synthesis and attenuated the capacity of NEM to deplete glutathione and inhibit LTC4 synthesis. While LTB4 and 5-hydroxyeicosatetraenoic synthesis were unaffected at these low NEM concentrations, LTB4 synthesis was inhibited at high concentrations (IC50 approximately 210 microM). Zymosan-induced eicosanoid synthesis was modulated by NEM in a similar fashion. Thus, NEM is an agonist of arachidonate metabolism with the capacity to modulate the spectrum of macrophage-derived eicosanoids by virtue of specific biochemical interactions with substrates and enzymes of the 5-lipoxygenase pathway.  相似文献   

15.
16.
We recently demonstrated activation of 5-lipoxygenase activity in human polymorphonuclear leukocytes (PMN) on preincubation of the cells with glutathione-depleting agents, namely 1-chloro-2,4-dinitrobenzene (Dnp-C1) and azodicarboxylic acid bis[dimethylamide] (diamide). In this paper we show that Dnp-C1, but not diamide, impairs the reduction of added organic peroxides in whole PMN. Also, since co-incubation of fatty acid hydroperoxides with arachidonate caused activation of 5-lipoxygenase, we propose that Dnp-C1 increases the peroxide level in PMN which is required for the onset of lipoxygenase activity. This could be substantiated in PMN homogenates by a glutathione-dependent depression of arachidonate 5-lipoxygenation. At higher arachidonate concentrations and in the presence of Ca2+ the glutathione effect was not observed but additional glutathione peroxidase also blocked this maximally stimulated 5-lipoxygenase. Together with other experiments, it became obvious that the formation of leukotrienes, but also of 15-lipoxygenase products, requires a sharply defined threshold level of fatty acid hydroperoxides which are generated by the lipoxygenases and counteracted by glutathione-dependent peroxidase(s). Dnp-C1 influences this equilibrium by removing glutathione and thereby inhibiting glutathione-dependent peroxidase activity. From our data we conclude that it is the physiological function of the peroxidase activity in PMN to determine an efficiently regulated threshold level of hydroperoxide products, below which no activation of 5-lipoxygenase or 15-lipoxygenase can occur.  相似文献   

17.
Human keratinocytes isolated from neonatal skin express 15-lipoxygenase activity at a level far greater than that of any of the other pathways for lipoxygenation of arachidonic acid. The 10,000 x g supernatant of sonicates of 10(6) keratinocytes generates 15-hydroxy-eicosatetraenoic acid from 5 micrograms/ml of arachidonic acid at a mean maximum rate of 38 ng/30 min at 37 degrees C, that is similar to the activity of the 15-lipoxygenase of human airway epithelial cells and greater than that of endothelial cells and leukocytes. The unique mediators derived from the 15-lipoxygenation of arachidonic acid, that stimulate secretion and exert hyperalgesic effects, may achieve a concentration in skin sufficient to regulate local cellular and neural functions.  相似文献   

18.
19.
Schwarz K  Gerth C  Anton M  Kuhn H 《Biochemistry》2000,39(47):14515-14521
The positional specificity of arachidonic acid oxygenation is currently the decisive parameter for classification of lipoxygenases. Although the mechanistic basis of lipoxygenase specificity is not completely understood, sequence determinants for the positional specificity have been identified for various isoenzymes. In this study we altered the positional specificity of the human 5-lipoxygenase by multiple site-directed mutagenesis and assayed the leukotriene A(4) synthase activity of the mutant enzyme species with (5S,6E,8Z,11Z,14Z)-5-hydroperoxy-6,8,11,14-eicos atetraenoic acid (5S-HpETE) as substrate. The wild-type 5-lipoxygenase converts 5S-HpETE almost exclusively to leukotriene A(4) as indicated by the dominant formation of leukotriene A(4) hydrolysis products. Since leukotriene synthesis involves a hydrogen abstraction from C(10), it was anticipated that the 15-lipoxygenating quadruple mutant F359W + A424I + N425M + A603I might not exhibit a major leukotriene A(4) synthase activity. Surprisingly, we found that this quadruple mutant exhibited a similar leukotriene synthase activity as the wild-type enzyme in addition to its double oxygenation activity. The leukotriene synthase activity of the 8-lipoxygenating double mutant F359W + A424I was almost twice as high, and similar amounts of leukotriene A(4) hydrolysis products and double oxygenation derivatives were detected with this enzyme species. These data indicate that site-directed mutagenesis of the human 5-lipoxygenase that leads to alterations in the positional specificity favoring arachidonic acid 15-lipoxygenation does not suppress the leukotriene synthase activity of the enzyme. The residual 8-lipoxygease activity of the mutant enzyme and its augmented rate of 5-HpETE conversion may be discussed as major reasons for this unexpected result.  相似文献   

20.
Challenge of human peripheral blood leukocytes with ionophore A23187 resulted in leukotriene (LT) synthesis, a decrease in total cellular 5-lipoxygenase activity, and a change in the subcellular localization of the enzyme. In homogenates from control cells, greater than 90% of the 5-lipoxygenase activity and protein was localized in the cytosol (100,000 X g supernatant). Ionophore challenge (2 microM) resulted in a loss of approximately 55% of the enzymatic activity and 35% of the enzyme protein from the cytosol. Concomitantly, there was an accumulation of inactive 5-lipoxygenase in the membrane (100,000 X g pellets) which accounted for at least 45% of the lost cytosolic protein. There was a good correlation between the quantities of LT synthesized and 5-lipoxygenase recovered in the membrane over an ionophore concentration range of 0.1-6 microM. The time course of the membrane association was similar to that of LT synthesis. Furthermore, although the pellet-associated enzyme recovered from ionophore-treated leukocytes was inactive, an irreversible, Ca2+-dependent membrane association of active 5-lipoxygenase could be demonstrated in cell-free systems. To determine whether ionophore treatment induced proteolytic degradation of 5-lipoxygenase, the total activity and protein content of 10,000 X g supernatants from control and ionophore-treated cells were examined. These supernatants, which included both cytosolic and membrane-associated enzyme, showed a 35% loss of 5-lipoxygenase activity but only an 8% loss of enzyme protein as a result of ionophore challenge (2 microM). Therefore, the majority of the loss of 5-lipoxygenase activity was most likely due to suicide inactivation during the LT synthesis, rather than to proteolytic degradation. Together these results are consistent with the hypothesis that ionophore treatment results in a Ca2+-dependent translocation of 5-lipoxygenase from the cytosol to a membrane-bound site, that the membrane-associated enzyme is preferentially utilized for LT synthesis, and that it is consequently inactivated. Thus, membrane translocation of 5-lipoxygenase may be an important initial step in the chain of events leading to full activation of this enzyme in the intact leukocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号