首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
<正>23.为适应激流中的极冷温度,亚洲胡瓜鱼(Osmerus mordax)在血浆、肝脏、肌肉及其他组织中产生甘油(丙三醇),以防止在零下温度时结冰。维持甘油水平需要饲喂昆虫幼体和具活性的甘油-3-磷酸脱氢酶(GPDH)。甘油可以通过丙氨酸或不完全糖酵解中的葡萄糖所产生的磷酸二羟丙酮(DHAP)合成。下图  相似文献   

2.
1.测定了两株耐高渗透压酵母(Hansenula arabitolgenes Fang.275及 Zygosaacharo-myces cheyalieri Guill.2.309)无细胞提取液中EMP 及磷酸戊糖循环的酶活力,除在2.309中未能测出磷酸果糖激酶外,其他所测备酶在两株酵母中均有活力。 2.在两株酵母中均有联系NADP的多元醇脱氢酶,催化二攫丙酮还原为甘油(275厦2.309中)以及D-核酮糖还原为D一阿拉伯糖醇(仅在275中)。 3.用葡萄糖-C14的呼吸实赊表明在275号酵母中磷酸戊糖循环占较大比重,这与它能产生大量五碳化合物——阿拉伯糖醇是相符的。  相似文献   

3.
葡萄酒中的甘油浓度通常为4~9g/l。甘油不影响酒的芳香特性,主要是给酒带来一些甜味,对酒的品质是有利的。高产甘油的酿酒酵母消耗酒中的乙醇,可以代替用物理方法生产酒精含量低的低度酒,因为物理方法往往会改变产品的感官性质。在乙醇发酵过程中甘油形成的主要作用是使细胞内达到氧化还原的平衡。甘油的形成需要通过磷酸甘油脱氢酸(GPDH)将磷酸二羟丙酮还原成3磷酸甘油(G3P),再由甘油3磷酸酶的脱磷酸作用将磷酸甘油转化成甘油。葡萄酒酵母在有关遗传和表现性状上都和非工业菌株有所不同。例如当初选择的…  相似文献   

4.
光合碳在叶片淀粉和蔗糖间分配的调节   总被引:8,自引:0,他引:8  
叶片光合作用中产生的三碳糖在淀粉和蔗糖之间的分配受许多因素控制,蔗糖形成速率是决定性因素。蔗糖形成的调节酶是果糖1,6—二磷酸酯酶(F1,6P_2ase)和磷酸蔗糖合成酶(SPS),调节作用是通过无机磷(Pi)、磷酸二羟丙酮(DHAP)、磷酸己糖(己糖—P)、果糖1,6—二磷酸(F1,6P_2)和果糖2,6—二磷酸(F2,6P_2)之间的复杂的调节关系进行的。其中F2,6P_2起着关键作用,它以极低的浓度调节生糖和酵解作用,既参与蔗糖合成又参与反馈抑制。  相似文献   

5.
从杜氏盐藻分离得到的二羟丙酮还原酶能专一性地催化二羟丙酮和甘油之间的可逆反应。酶催化二羟丙酮还原及甘油氧化的最适 PH分别为7.5和9.0;藻细胞经高渗处理,其甘油含量增加,酶催化甘油合成的活性比处理前提高120%,且大于其催化甘油转化的活性;藻细胞经低渗处理,其甘油含量减少,酶催化甘油转化的速率比处理前提高32%,暗示二羟丙酮还原酶在杜氏盐藻渗透调节过程中是甘油合成或转化的一个关键酶。  相似文献   

6.
考察共表达甘油脱氢酶(GldA)和二羟丙酮激酶(DhaKLM)对大肠杆菌生长及甘油代谢的影响。结果表明:在好氧条件下,共表达甘油脱氢酶及二羟丙酮激酶可以提高大肠杆菌利用甘油合成菌体的效率,利用等量的甘油,重组菌最高菌密度比对照菌提高了70%,细胞干质量为3.54 g(以每升发酵液计)。在厌氧条件下,仅共表达甘油脱氢酶并不能促进大肠杆菌的甘油代谢,而同时共表达甘油脱氢酶和二羟丙酮激酶可以明显提高大肠杆菌代谢甘油的能力,每克菌体消耗的甘油量提高了42%,每克干细胞中达11.08 g,代谢产物组成也发生显著变化,乙酸成为主要产物。这说明共表达gldA及dhaKLM基因能有效促进大肠杆菌好氧利用甘油生长及厌氧甘油代谢的能力。  相似文献   

7.
致力于建立一条控制或降低大气中CO2浓度的途径,选择对 进行代谢工程以便改进其光合固定CO2的效率。作为研究的初始阶段,将编码丙糖磷酸异构酶、果糖-1,6-二磷酸醛缩酶及果糖-1,6-二磷酸酶的3个基因构建进一个由启动子trc控制的表达质粒pTrcFAT,成功地在大肠杆菌中实现了上述3个基因的活性共表达。活性测定结果显示:从1L培养液获得的破菌上清液每分钟可以催化二羟丙酮磷酸(DHAP)转化成700μmol果糖-6-磷酸。在此基础上进一步构建了这3个基因共表达的大肠杆菌-蓝藻穿梭表达质粒,也在大肠杆菌中实现了活性表达,当外泊基因的操纵子与载体质粒以大于1:1的比例进行构建时,可显著提高外源基因的表达量及相应的的酶活性。  相似文献   

8.
杜氏盐藻(Dunaliella salina)是一种抗渗透能力强的单细胞绿藻, 甘油在其渗透调节过程中发挥重要作用。本实验对5种不同NaCl浓度条件下, 盐藻的生长、细胞内甘油含量及甘油代谢相关酶的活性变化进行了测定。结果表明, NaCl浓度过高或过低均影响盐藻的生长; 高渗胁迫条件下甘油含量迅速增加,3-磷酸甘油磷酸酶的活性和二羟丙酮还原酶催化二羟丙酮转化为甘油的活性明显增加; 而低渗胁迫条件下的甘油含量会迅速降低, 3-磷酸甘油磷酸酶的活性丧失, 二羟丙酮还原酶催化甘油转化为二羟丙酮的活性增加。基于此实验结果, 我们对盐藻渗透胁迫条件下细胞内的甘油代谢过程与其抗渗透胁迫能力的相关性进行了探讨。  相似文献   

9.
胞浆3-磷酸甘油脱氢酶(GPD)是酿酒酵母细胞甘油合成过程中的关键限速酶.尽管高产甘油菌株产甘油假丝酵母基因组中编码该酶的基因CgGPD已经被克隆出来,但是具体的功能,特别是与酿酒酵母GPD1GPD2基因的功能比较值得进一步研究.以酿酒酵母渗透压敏感型的gpd1/gpd2gpd1突变株为宿主,分别导入CgGPD、GPD1GPD2基因,比较分析了CgGPD、GPD1GPD2基因在高渗透压胁迫条件下和厌氧环境中的表达调控,及其对细胞甘油合成能力的影响.研究发现,GPD1基因受到渗透压诱导表达,GPD2基因在细胞厌氧条件下起着氧化还原平衡调节作用,而CgGPD基因不仅能够在渗透压胁迫条件下通过过量快速合成甘油调节渗透压平衡,而且能够在厌氧培养环境中互补GPD2基因的缺失,使gpd1/gpd2缺失突变株能够正常生长,同时提高了突变株的甘油合成能力.结果表明,CgGPD基因在gpd1/gpd2缺失突变株中既具有GPD1基因的功能,又能发挥GPD2基因的功能.  相似文献   

10.
摘要:【目的】获得产甘油假丝酵母(Candida glycerinogenes)耐高渗和过量合成甘油的关键调控基因—丝裂原活化蛋白激酶基因(CgHOG1),并考察其渗透压调节功能。【方法】运用简并PCR 结合Self-Formed Adaptor PCR技术从产甘油假丝酵母基因组中克隆CgHOG1基因并进行生物信息学相关分析,将CgHOG1基因在酿酒酵母(Saccharomyces cerevisiae W303-1A)hog1Δ缺失突变株中互补表达,考察菌株耐渗透压能力变化。【结果】所获得CgHOG1基因全长1164 bp,编码387个氨基酸序列(GenBank No. KC480066);氨基酸序列与来源于Ogataea parapolymorpha的Hog1p同源性最高,为86%;该基因在酿酒酵母hog1Δ缺失突变株中异源表达能够显著提高菌株的抗盐耐高渗和甘油合成能力。【结论】本文所获得的基因CgHOG1是一个具有耐高渗和过量合成甘油调控功能的新基因,研究结果为产甘油假丝酵母超高渗应答机制的研究及抗盐耐旱作物改造提供了新的基因。  相似文献   

11.
To prevent dihydroxyacetone (DHA) by-production during glyceric acid (GA) production from glycerol using Gluconobacter frateurii, we used a G. frateurii THD32 mutant, ΔsldA, in which the glycerol dehydrogenase subunit-encoding gene (sldA) was disrupted, but ΔsldA grew much more slowly than the wild type, growth starting after a lag of 3 d under the same culture conditions. The addition of 1% w/v D-sorbitol to the medium improved both the growth and the GA productivity of the mutant, and ΔsldA produced 89.1 g/l GA during 4 d of incubation without DHA accumulation.  相似文献   

12.
To prevent dihydroxyacetone (DHA) by-production during glyceric acid (GA) production from glycerol using Gluconobacter frateurii, we used a G. frateurii THD32 mutant, ΔsldA, in which the glycerol dehydrogenase subunit-encoding gene (sldA) was disrupted, but ΔsldA grew much more slowly than the wild type, growth starting after a lag of 3 d under the same culture conditions. The addition of 1% w/v D-sorbitol to the medium improved both the growth and the GA productivity of the mutant, and ΔsldA produced 89.1 g/l GA during 4 d of incubation without DHA accumulation.  相似文献   

13.
研究了不同磷浓度时渗透压对产甘油假丝酵母甘油合成与胞内磷积累的影响。结果表明,不同磷含量时,产甘油假丝酵母甘油合成越多,分泌至胞外和积累于胞内的甘油也越多,其最大甘油合成量存在一个最适渗透压。同样;在相同渗透压下,其最大甘油合成量也存在一个最适磷浓度。在相同磷含量时,渗透压增高能够促进胞内聚磷酸盐积累;当渗透压相同时,培养基中磷含量增加,胞内游离磷和聚磷酸盐均增加。在生长稳定期后期,富磷可以促进胞内游离磷和聚磷酸盐积累显著增加。经分析发现,产甘油假丝酵母胞内积累甘油与聚磷酸盐,可能对克服对数生长期细胞数量少而渗透压胁迫大的困境发挥了极其重要的作用,从而能维持其生长稳定期较高的生物量、细胞存活率和甘油产量。  相似文献   

14.
In a cell culture of Saccharomyces cerevisiae exponentially growing in basal medium, only 0.02% of the cells were osmotolerant, i.e., survived transfer to medium containing 1.4 M NaCl. Short-time conditioning in 0.7 M NaCl medium transformed the whole population into an osmotolerance phenotype. During this conditioning, the rate of formation of glycerol, the main compatible solute in S. cerevisiae, increased threefold and the specific activity of glycerol-3-phosphate dehydrogenase (NAD+) (GPDH) (EC 1.1.1.8) was enhanced sixfold. The apparent flux control coefficient for GPDH in the formation of glycerol was estimated to be 0.6. Glycerol production was also favored by regulated activities of alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase [NAD(P)]+ (EC 1.2.1.5). About 50% of the total glycerol produced during conditioning in 0.7 M NaCl was retained intracellularly, and the increased glycerol accumulation was shown to be not merely a result of enhanced production rate but also of increased retention of glycerol. Washing the cells with solutions of lower salinities resulted in loss of glycerol, with retained levels proportional to the concentration of NaCl in the washing solution. Cycloheximide addition inhibited the development of acquired osmotolerance and conditioned cells washed free of glycerol retained a high degree of osmotolerance, which indicate that protein synthesis was required to establish the osmotolerance state.  相似文献   

15.
Trypanosoma brucei is a parasitic protist that undergoes a complex life cycle during transmission from its mammalian host (bloodstream forms) to the midgut of its insect vector (procyclic form). In both parasitic forms, most glycolytic steps take place within specialized peroxisomes, called glycosomes. Here, we studied metabolic adaptations in procyclic trypanosome mutants affected in their maintenance of the glycosomal redox balance. T. brucei can theoretically use three strategies to maintain the glycosomal NAD+/NADH balance as follows: (i) the glycosomal succinic fermentation branch; (ii) the glycerol 3-phosphate (Gly-3-P)/dihydroxyacetone phosphate (DHAP) shuttle that transfers reducing equivalents to the mitochondrion; and (iii) the glycosomal glycerol production pathway. We showed a hierarchy in the use of these glycosomal NADH-consuming pathways by determining metabolic perturbations and adaptations in single and double mutant cell lines using a combination of NMR, ion chromatography-MS/MS, and HPLC approaches. Although functional, the Gly-3-P/DHAP shuttle is primarily used when the preferred succinate fermentation pathway is abolished in the Δpepck knock-out mutant cell line. In the absence of these two pathways (Δpepck/RNAiFAD-GPDH.i mutant), glycerol production is used but with a 16-fold reduced glycolytic flux. In addition, the Δpepck mutant cell line shows a 3.3-fold reduced glycolytic flux compensated by an increase of proline metabolism. The inability of the Δpepck mutant to maintain a high glycolytic flux demonstrates that the Gly-3-P/DHAP shuttle is not adapted to the procyclic trypanosome context. In contrast, this shuttle was shown earlier to be the only way used by the bloodstream forms of T. brucei to sustain their high glycolytic flux.  相似文献   

16.
17.
An Escherichiacoli strain, that lacks aerobic glycerol 3-phosphate (G3P) dehydrogenase and succinate dehydrogenase, was grown anaerobically on glycerol and fumarate. The addition of fumarate to such cells resulted in the formation of dihydroxyacetone phosphate (DHAP) suggesting that G3P is oxidized to DHAP while fumarate is reduced to succinate. Associated with the transhydrogenation was an extrusion of protons from the cell into the incubation medium. The stoichiometry of protons extruded to DHAP formed was near 2. Everted membrane vesicles take up protons in the presence of added G3P and fumarate.  相似文献   

18.
19.
In filamentous fungi, glycerol biosynthesis has been proposed to play an important role during conidiospore germination and in response to a hyperosmotic shock, but little is known about the genes involved. Here, we report on the characterization of the major Aspergillus nidulans glycerol 3-phosphate dehydrogenase (G3PDH)-encoding gene, gfdA. G3PDH is responsible for the conversion of dihydroxyacetone phosphate (DHAP) into glycerol 3-phosphate (G3P), which is subsequently converted into glycerol by an as yet uncharacterized phosphatase. Inactivation of gfdA does not abolish glycerol biosynthesis, showing that the other pathway from DHAP, via dihydroxyacetone (DHA), to glycerol is also functional in A. nidulans. The gfdA null mutant displays reduced G3P levels and an osmoremediable growth defect on various carbon sources except glycerol. This growth defect is associated with an abnormal hyphal morphology that is reminiscent of a cell wall defect. Furthermore, the growth defect at low osmolarity is enhanced in the presence of the chitin-interacting agent calcofluor and the membrane-destabilizing agent sodium dodecyl sulphate (SDS). As inactivation of gfdA has no impact on phospholipid biosynthesis or glycolytic intermediates levels, as might be expected from reduced G3P levels, a previously unsuspected link between G3P and cell wall integrity is proposed to occur in filamentous fungi.  相似文献   

20.
Dunaliella has been extensively studied due to its intriguing adaptation to high salinity. Its di‐domain glycerol‐3‐phosphate dehydrogenase (GPDH) isoform is likely to underlie the rapid production of the osmoprotectant glycerol. Here, we report the structure of the chimeric Dunaliella salina GPDH (DsGPDH) protein featuring a phosphoserine phosphatase‐like domain fused to the canonical glycerol‐3‐phosphate (G3P) dehydrogenase domain. Biochemical assays confirm that DsGPDH can convert dihydroxyacetone phosphate (DHAP) directly to glycerol, whereas a separate phosphatase protein is required for this conversion process in most organisms. The structure of DsGPDH in complex with its substrate DHAP and co‐factor nicotinamide adenine dinucleotide (NAD) allows the identification of the residues that form the active sites. Furthermore, the structure reveals an intriguing homotetramer form that likely contributes to the rapid biosynthesis of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号