首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hedgehog信号通路在动物胚胎期及出生后骨骼肌的生长发育过程中发挥着重要作用。本文综述了Hedgehog信号通路对骨骼肌细胞增殖分化及肌纤维特性的调控作用及其在骨骼肌发育过程中与其它信号通路交互作用最新研究进展,为畜禽肉品质改良和肌肉相关疾病治疗提供理论基础。  相似文献   

2.
骨骼肌质量约占健康成人体重的40%。骨骼肌不仅直接参与运动,还作为分泌器官分泌多种肌肉因子影响其它器官的功能,因此骨骼肌功能的维持对机体健康具有重要意义。骨骼肌质量作为骨骼肌功能的基础,常常受到运动、疾病等多种因素的影响。如抗阻运动可引起骨骼肌细胞蛋白质合成增加,诱发肌肉肥大;而肢体废用、慢性阻塞性肺疾病、心衰、慢性肾病、恶病质、杜氏肌营养不良等疾病可导致骨骼肌细胞蛋白质合成降低或降解增强,引起肌肉萎缩。骨骼肌肥大或萎缩的过程涉及多条信号通路的改变,如IGF-1/PI3K/Akt、肌肉生长抑制素、G蛋白等介导的信号通路参与了骨骼肌肥大的调控;而泛素-蛋白酶体途径、IGF-1/Akt/FoxO、自噬-溶酶体途径、NF-κB及糖皮质激素介导的信号通路则在调节肌肉萎缩中发挥重要作用。这些信号通路在不同的条件下被激活或抑制,共同调节骨骼肌质量。本文综述骨骼肌质量控制信号通路及其主要转导机制,以加深对骨骼肌质量调控的理解与认识。  相似文献   

3.
白血病抑制因子(LIF)是一种肌肉因子(myokines),在损伤骨骼肌和运动后骨骼肌中高丰度表达,它可能通过JAK2和STAT3信号通路调节肌卫星细胞和成肌细胞增殖,通过PI3K信号通路抑制成肌细胞凋亡,也可以通过LIF受体信号通路调节骨骼肌局部炎症反应,同时与多种细胞因子相互作用抑制成肌细胞过早分化,从而在骨骼肌损伤修复和骨骼肌肥大中发挥重要作用。外源性补充重组LIF可促进骨骼肌损伤修复和促进骨骼肌肥大,这具有非常重要的临床应用价值。LIF可能成为治疗急性肌肉损伤和促进骨骼肌肥大的一种新手段,有关LIF在骨骼肌方面的研究也将会成为一个新的研究热点。  相似文献   

4.
雄激素可调控骨骼肌蛋白质代谢,从而在肌肉质量的维持中发挥重要作用。对雄激素作用机制的研究表明,雄激素可在雄激素受体介导下,分别通过IGF-1/Akt、ERK/mTOR和GPCR等信号通路促进骨骼肌蛋白质合成,促进肌肉质量增长;当雄激素不足时,可通过泛素蛋白酶体系统、自噬和肌肉生长抑制素等途径促进骨骼肌蛋白质分解和肌肉流失。雄激素调控骨骼肌蛋白质代谢机制的阐明,将加深人们对雄激素功能及骨骼肌蛋白质代谢调控的认识,具有重要意义。  相似文献   

5.
骨骼肌由异质性的肌纤维组成,不同类型的肌纤维具有不同的形态、代谢、生理和生化特性.根据不同肌纤维中表达的特异肌球蛋白重链亚型可将成体哺乳动物骨骼肌纤维分为4类,即Ⅰ,Ⅱa,Ⅱx和Ⅱb型.骨骼肌保持高度可塑性,当机体受到某些生理或病理刺激时,骨骼肌为了适应需要,通过激活胞内相关信号通路改变肌纤维特异基因的表达从而诱发肌纤维类型的转化.本文综述了细胞内参与调控肌纤维类型转化的多条重要信号通路,如Ca2+信号通路,Ras/MAPK信号通路及多种转录调节因子,辅激活因子和抑制子等,为改善肉类品质,提高运动训练效果及治疗肌肉相关疾病奠定了理论基础.  相似文献   

6.
7.
Wnt信号通路分为经典Wnt信号通路和非经典Wnt信号通路,而非经典Wnt信号通路又可分为Wnt/Ca^(2+)信号通路、Wnt/PCP信号通路和Wnt/PI3K信号通路。经典Wnt信号通路的恰当激活可有效抑制Notch信号通路,促进成肌分化和肌管融合。但经典Wnt信号通路过早或持续性激活,可通过调节多种细胞因子的表达,加重损伤骨骼肌纤维化,损害骨骼肌再生。而Wnt7a通过多条非经典Wnt信号通路刺激肌卫星细胞扩增、迁移,促进骨骼肌损伤修复,并能激活Akt/mTOR信号通路而诱导肌纤维肥大。  相似文献   

8.
神经肌肉接头是目前研究较为深入的一种经典外周胆碱能化学突触。神经肌肉接头突触形成依赖于运动神经元与骨骼肌细胞之间的精细相互作用和复杂信号传递。此外,胶质细胞在神经肌肉接头突触发育和成熟过程中亦发挥重要功能。现将主要围绕近年来神经肌肉接头发育过程中若干重要信号通路以及相关神经肌肉系统疾病的主要研究进展进行综述。  相似文献   

9.
Wnt信号通路分为经典Wnt信号通路和非经典Wnt信号通路,而非经典Wnt信号通路又可分为Wnt/Ca~(2+)信号通路、Wnt/PCP信号通路和Wnt/PI3K信号通路。经典Wnt信号通路的恰当激活可有效抑制Notch信号通路,促进成肌分化和肌管融合。但经典Wnt信号通路过早或持续性激活,可通过调节多种细胞因子的表达,加重损伤骨骼肌纤维化,损害骨骼肌再生。而Wnt7a通过多条非经典Wnt信号通路刺激肌卫星细胞扩增、迁移,促进骨骼肌损伤修复,并能激活Akt/mTOR信号通路而诱导肌纤维肥大。  相似文献   

10.
骨骼肌是人体氨基酸和蛋白质的主要贮存、代谢库,其正常功能和代谢过程受到多种病理因素的影响。骨骼肌萎缩发生于骨骼肌稳态严重失衡状态下,对患者生活和社会医疗造成了沉重负担。近年来,由于世界肥胖人群数量激增,肥胖诱导的骨骼肌萎缩正日益成为公共卫生的严峻挑战之一。肥胖诱导的骨骼肌萎缩过程涉及多种信号分子或通路的改变,如泛素蛋白酶系统、自噬溶酶体系统、胰岛素/IGF1-PI3K-Akt、肌肉生长抑制素、白细胞介素-6、肿瘤坏死因子等;这些信号分子或通路在肥胖状态下被激活或抑制后,可共同影响蛋白质合成/分解平衡进而造成骨骼肌萎缩。基于上述信号分子或通路,系统总结并讨论了肥胖诱导的骨骼肌萎缩机制,以期为寻找缓解/治疗肥胖诱导的肌萎缩靶点和进一步开发利用天然植物化学物提供理论依据。  相似文献   

11.
In response to pathophysiological stresses, cardiac myocytes undergo hypertrophic growth or apoptosis. Multiple signalling pathways have been implicated in these responses and among them, kinases such as mitogen‐activated protein kinases (MAPKs) and Akt. However, the distinction between signalling pathways originally believed to be specific for either hypertrophy, apoptosis or cell survival is fading. The existing data, coming from different experimental systems, often are conflicting. In this study, we sought to compare aspects of intracellular signalling activated by diverse stimuli in a single experimental system, adult rat cardiac myocytes. Furthermore, we assessed the role of these stimuli in eliciting a particular cell phenotype, i.e. whether they promote hypertrophy, cell survival or apoptosis. The results demonstrate that the hypertrophic agonist phenylephrine is the most potent activator of MAPKs/mitogen and stress‐ activated kinase MSK1, although its effect on Akt phosphorylation is relatively minor. The pro‐apoptotic concentration of H2O2 activates strongly both MAPKs and PI3K/Akt pathways. Insulin‐like growth factor‐1 has a minimal effect on phosphorylation of MAPKs/MSK1, but it is a potent activator of Akt. In conclusion, hypertrophic, pro‐survival or apoptotic stimuli operate through the same signalling pathways with different time course and amplitude of kinase activation. Thus, to determine the effect of different stimuli on cell fate, it is important to assess signalling pathways as a network and not as a single pathway. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Bone morphogenetic proteins (BMPs) are key regulators of cell fate decisions during embryogenesis and tissue homeostasis. BMPs signal through a coordinated assembly of two types of transmembrane serine/threonine kinase receptors to induce Smad1/5/8 plus non-Smad pathways, such as MAPK and Akt. The recent discovery of BMP receptor inhibitors opened new avenues to study specific BMP signalling and to delineate this effect from TGF-β and Activin signalling. Here we present comprehensive and quantitative analyses on both canonical and non-Smad mediated BMP signalling under Dorsomorphin (DM) and LDN-193189 (LDN) treatment conditions. We demonstrate for the first time, that both compounds affect not only the Smad but also the non-Smad signalling pathways induced by either BMP2, BMP6 or GDF5. The activation of p38, ERK1/2 and Akt in C2C12 cells was inhibited by DM and LDN. In addition “off-target” effects on all branches of BMP non-Smad signalling are presented. From this we conclude that the inhibition of BMP receptors by DM and more efficiently by LDN-193189 affects all known BMP induced signalling cascades.  相似文献   

13.
Heterotrimeric G-protein signalling systems are primarily activated via cell surface receptors possessing the seven membrane span motif. Several observations suggest the existence of other modes of input to such signalling systems either downstream of effectors or at the level of G-proteins themselves. Using a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae, we identified three proteins, AGS1-3 (for Activators of G-protein Signalling), that activated heterotrimeric G-protein signalling pathways in the absence of a typical receptor. AGS1 defines a distinct member of the super family of ras related proteins. AGS2 is identical to mouse Tctex1, a protein that exists as a light chain component of the cytoplasmic motor protein dynein and subserves as yet undefined functions in cell signalling pathways. AGS3 possesses a series of tetratrico repeat motifs and a series of four amino acid repeats termed G-protein regulatory motifs. The GPR motifs are found in a number of proteins that interact with and regulate Galpha. Although each AGS protein activates G-protein signaling, they do so by different mechanisms within the context of the G-protein activation/deactivation cycle. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signalling pathways.  相似文献   

14.
MDP (muramyl dipeptide), a component of peptidoglycan, interacts with NOD2 (nucleotide-binding oligomerization domain 2) stimulating the NOD2-RIP2 (receptor-interacting protein 2) complex to activate signalling pathways important for antibacterial defence. Here we demonstrate that the protein kinase activity of RIP2 has two functions, namely to limit the strength of downstream signalling and to stabilize the active enzyme. Thus pharmacological inhibition of RIP2 kinase with either SB 203580 [a p38 MAPK (mitogen-activated protein kinase) inhibitor] or the Src family kinase inhibitor PP2 induces a rapid and drastic decrease in the level of the RIP2 protein, which may explain why these RIP2 inhibitors block MDP-stimulated downstream signalling and the production of IL-1beta (interleukin-1beta) and TNFalpha (tumour necrosis factor-alpha). We also show that RIP2 induces the activation of the protein kinase TAK1 (transforming-growth-factor-beta-activated kinase-1), that a dominant-negative mutant of TAK1 inhibits RIP2-induced activation of JNK (c-Jun N-terminal kinase) and p38alpha MAPK, and that signalling downstream of NOD2 or RIP2 is reduced by the TAK1 inhibitor (5Z)-7-oxozeaenol or in TAK1-deficient cells. We also show that MDP activates ERK1 (extracellular-signal-regulated kinase 1)/ERK2 and p38alpha MAPK in human peripheral-blood mononuclear cells and that the activity of both MAPKs and TAK1 are required for MDP-induced signalling and production of IL-1beta and TNFalpha in these cells. Taken together, our results indicate that the MDP-NOD2/RIP2 and LPS (lipopolysaccharide)-TLR4 (Toll-like receptor 4) signalling pathways converge at the level of TAK1 and that many subsequent events that lead to the production of pro-inflammatory cytokines are common to both pathways.  相似文献   

15.
Unbalanced levels of caveolin-3 (Cav3) are involved in muscular disorders. In the present study we show that differentiation of immortalized myoblasts is affected by either lack or overexpression of Cav3. Nevertheless, depletion of Cav3 induced by delivery of the dominant-negative Cav3 (P104L) form elicited a more severe phenotype, characterized by the simultaneous attenuation of the Akt and p38 signalling networks, leading to an immature cell and molecular signature. Accordingly, differentiation of myoblasts harbouring Cav3 (P104L) was improved by countering the reduced Akt and p38 signalling network via administration of IGF-1 or trichostatin A. Furthermore, loss of Cav3 correlated with a deregulation of the TGF-β-induced Smad2 and Erk1/2 pathways, confirming that Cav3 controls TGF-β signalling at the plasma membrane. Overall, these data suggest that loss of Cav3, primarily causing attenuation of both Akt and p38 pathways, contributes to impair myoblast fusion.  相似文献   

16.
Axonal regeneration is influenced by factors in the extracellular environment, including neurotrophins, such as NGF, and adhesion molecules, such as laminin. The provision of both NGF and a permissive substrate to cultured adult NGF-responsive DRG neurons results in enhanced levels of neurite growth not achievable by either factor alone. In this study, we have investigated the early signalling events that contribute to NGF and laminin-induced neurite growth. Adult NGF-responsive DRG neurons were plated on poly-d-lysine for 2 h then stimulated with NGF, laminin, or laminin plus NGF for 10 min, 1 h, or 6 h. Signalling pathways were subsequently analysed using Western blotting and pharmacological inhibition of specific signalling components. While activation of the various signalling intermediates (Src, FAK, Akt, MAPK) could be detected as early as 10 min-1 h after stimulation, significant neurite growth was observed mainly at the 6 h time point. The results of the time course experiments showed differential activation of the signalling intermediates. Src was activated by all treatments (NGF, laminin and the combination) at the earliest time point analysed, 10 min. NGF stimulation also resulted in detectable activation of FAK, Akt and MAPK by 10 min. However, laminin stimulation alone did not result in detectable activation of FAK, Akt or MAPK until the 1 h time point. Inhibition of either Src or FAK activity attenuated both laminin and/or NGF-induced PI 3-K/Akt and MEK/MAPK signalling pathways, as well as neurite growth. Downstream inhibition of Akt by Akt knockdown also blocked observed neurite growth, while inhibition of MEK/MAPK had no significant effect. Together, these results demonstrate that signalling underlying neurite growth can be detected within minutes of stimulation and provide a mechanism for the observed enhancement of neurite growth when both NGF and the permissive substrate, laminin, are provided.  相似文献   

17.
Signalling pathways that mediate skeletal muscle hypertrophy and atrophy   总被引:1,自引:0,他引:1  
Atrophy of skeletal muscle is a serious consequence of numerous diseases, including cancer and AIDS. Successful treatments for skeletal muscle atrophy could either block protein degradation pathways activated during atrophy or stimulate protein synthesis pathways induced during skeletal muscle hypertrophy. This perspective will focus on the signalling pathways that control skeletal muscle atrophy and hypertrophy, including the recently identified ubiquitin ligases muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), as a basis to develop targets for pharmacologic intervention in muscle disease.  相似文献   

18.
Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-alpha or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-alpha and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.  相似文献   

19.
Cerebral cavernous malformations (CCMs) are neurovascular abnormalities characterized by thin, leaky blood vessels resulting in lesions that predispose to haemorrhages, stroke, epilepsy and focal neurological deficits. CCMs arise due to loss-of-function mutations in genes encoding one of three CCM complex proteins, KRIT1, CCM2 or CCM3. These widely expressed, multi-functional adaptor proteins can assemble into a CCM protein complex and (either alone or in complex) modulate signalling pathways that influence cell adhesion, cell contractility, cytoskeletal reorganization and gene expression. Recent advances, including analysis of the structures and interactions of CCM proteins, have allowed substantial progress towards understanding the molecular bases for CCM protein function and how their disruption leads to disease. Here, we review current knowledge of CCM protein signalling with a focus on three pathways which have generated the most interest—the RhoA–ROCK, MEKK3–MEK5–ERK5–KLF2/4 and cell junctional signalling pathways—but also consider ICAP1-β1 integrin and cdc42 signalling. We discuss emerging links between these pathways and the processes that drive disease pathology and highlight important open questions—key among them is the role of subcellular localization in the control of CCM protein activity.  相似文献   

20.
Acquiring signalling specificity from the cytokine receptor gp130   总被引:10,自引:0,他引:10  
Repeated use of a relatively small number of intracellular signalling molecules specifies tissue- and cell-type-specific responses to pleiotropic-acting growth factors and cytokines. Currently, gaining a better understanding of these mechanisms is a major challenge. The IL-6 family of cytokines shares a common receptor subunit called gp130. Phenotypic comparisons of mice with amino acid knock-in substitutions that disable individual signalling modules in gp130, with knockout mice lacking ligand-specific gp130 activation or transgenic mice with constitutive gp130 activation, has led to the identification of two molecular mechanisms. One mechanism is based on differential target-gene responsiveness to signalling threshold levels transduced by either the STAT1/3 or the SHP2/ERK cascade, which are under reciprocal negative regulation and together account for the majority of intracellular gp130 signalling. The second mechanism is based on the capacity of certain cell types to integrate the often-conflicting information transduced by these two pathways, and to prevent pathological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号