首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar salterns, based on a multi-pond system, give a discontinuous gradient of salt concentrations. The heterotrophic bacterial populations of ponds containing from 10% salt to saturation have been studied. Saltern samples were spread on agar plates containing different media for halophilic bacteria and one medium made with water of the pond plus nutrients. Replica plating was done to determine the salt range for growth of the colonies. We studied 150 strains to determine the salt spectra of growth, the morphology, and nutrient requirements. The following conclusions were reached: (a) In salt concentrations above 10% (total salts), most bacteria are halophilic and few are halotolerant; (b) the two types of halophilic bacteria, moderate and extreme, show different distributions; in these ponds a narrow overlap exists between 25% and 32% salts with moderate halophiles predominating below this interval and extreme halophiles above it; (c) the populations of moderate halophiles are highly heterogeneous, and the salt concentration of their habitat affects their taxonomic composition, salt range for growth, and nutrient requirements. The population composition of extreme halophiles is less affected by the salt concentrations at which these bacteria are found.  相似文献   

2.
Eighteen strains of extremely halophilic bacteria and three strains of moderately halophilic bacteria were isolated from four different solar salt environments. Growth tests on carbohydrates, low-molecular-weight carboxylic acids, and complex medium demonstrated that the moderate halophiles and strains of the extreme halophiles Haloarcula and Halococcus grew on most of the substrates tested. Among the Halobacterium isolates were several metabolic groups: strains that grew on a broad range of substrates and strains that were essentially confined to either amino acid (peptone) or carbohydrate oxidation. One strain (WS-4) only grew well on pyruvate and acetate. Most strains of extreme halophiles grew by anaerobic fermentation and possibly by nitrate reduction. Tests of growth potential in natural saltern brines demonstrated that none of the halobacteria grew well in brines which harbor the densest populations of these bacteria in solar salterns. All grew best in brines which were unsaturated with NaCl. The high concentrations of Na+ and Mg2+ found in saltern crystallizer brines limited bacterial growth, but the concentrations of K+ found in these brines had little effect. MgSO4 was relatively more inhibitory to the extreme halophiles than was MgCl2, but the reverse was true for the moderate halophiles.  相似文献   

3.
盐田土壤嗜盐微生物对盐田生态系统的良性循环和盐的生产至关重要。本文对江苏连云港台北盐田土壤和盐城三圩盐田土壤的嗜盐细菌和古菌的多样性进行了研究, 结果表明两地盐土嗜盐细菌和古菌的分布具有相似性和独特性。采用培养法从两地盐土中共分离到17株嗜盐细菌, 其中Halomonas为两地盐土共有的嗜盐细菌, 而Halobacillus和Pontibacillus仅在三圩盐土中发现。通过非培养的16S rDNA 基因文库法从两地盐土中发现了13种嗜盐古菌, 台北盐土有Halobacterium 和 Haloplanus, 三圩盐土有Halobacterium, Natronobacterium, Halogeometricum 和 Haloarcula。10个嗜盐古菌的16S rDNA和GenBank已知序列的同源性为92%~97%, 可能为这些属中的新种。该研究为盐田环境嗜盐微生物资源的开发和利用奠定了基础。  相似文献   

4.
盐田土壤嗜盐微生物对盐田生态系统的良性循环和盐的生产至关重要.本文对江苏连云港台北盐田土壤和盐城三圩盐田土壤的嗜盐细菌和古菌的多样性进行了研究,结果表明两地盐土嗜盐细菌和古菌的分布具有相似性和独特性.采用培养法从两地盐土中共分离到17株嗜盐细菌,其中Halomonas为两地盐土共有的嗜盐细菌,而Halobacillus和Pontibacillus仅在三圩盐土中发现.通过非培养的16S rDNA基因文库法从两地盐土中发现了13种嗜盐古菌,台北盐土有Halobacterium和Haloplanus,三圩盐土有Halobacterium, Natronobacterium, Halogeometricum和Haloarcula. 10个嗜盐古菌的16S rDNA和GenBank已知序列的同源性为92%~97%.可能为这些属中的新该研究为盐田环境嗜盐微生物资源的开发和利用奠定了基础.  相似文献   

5.
Halophiles are found in all three domains of life. Within the Bacteria we know halophiles within the phyla Cyanobacteria, Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes, and Bacteroidetes. Within the Archaea the most salt-requiring microorganisms are found in the class Halobacteria. Halobacterium and most of its relatives require over 100–150 g/l salt for growth and structural stability. Also within the order Methanococci we encounter halophilic species. Halophiles and non-halophilic relatives are often found together in the phylogenetic tree, and many genera, families and orders have representatives with greatly different salt requirement and tolerance. A few phylogenetically coherent groups consist of halophiles only: the order Halobacteriales, family Halobacteriaceae (Euryarchaeota) and the anaerobic fermentative bacteria of the order Halanaerobiales (Firmicutes). The family Halomonadaceae (Gammaproteobacteria) almost exclusively contains halophiles. Halophilic microorganisms use two strategies to balance their cytoplasm osmotically with their medium. The first involves accumulation of molar concentrations of KCl. This strategy requires adaptation of the intracellular enzymatic machinery, as proteins should maintain their proper conformation and activity at near-saturating salt concentrations. The proteome of such organisms is highly acidic, and most proteins denature when suspended in low salt. Such microorganisms generally cannot survive in low salt media. The second strategy is to exclude salt from the cytoplasm and to synthesize and/or accumulate organic 'compatible' solutes that do not interfere with enzymatic activity. Few adaptations of the cells' proteome are needed, and organisms using the 'organic-solutes-in strategy' often adapt to a surprisingly broad salt concentration range. Most halophilic Bacteria, but also the halophilic methanogenic Archaea use such organic solutes. A variety of such solutes are known, including glycine betaine, ectoine and other amino acid derivatives, sugars and sugar alcohols. The 'high-salt-in strategy' is not limited to the Halobacteriaceae. The Halanaerobiales (Firmicutes) also accumulate salt rather than organic solutes. A third, phylogenetically unrelated organism accumulates KCl: the red extremely halophilic Salinibacter (Bacteroidetes), recently isolated from saltern crystallizer brines. Analysis of its genome showed many points of resemblance with the Halobacteriaceae, probably resulting from extensive horizontal gene transfer. The case of Salinibacter shows that more unusual types of halophiles may be waiting to be discovered.  相似文献   

6.
The moderately halophilic bacterium Halomonas eurihalina strain F2-7, able to produce an exopolysaccharide, was found to contain two plasmids named pVE1 and pVE2, of 8.1 and 5.8 kb respectively. We found no evidence for the involvement of these plasmids in the expression of the mucoid phenotype. Restriction maps of both plasmids were constructed. Southern hybridization revealed similarities between them but excluded the existence of sequences homologous to other plasmids isolated from the Halomonas species. Neither pVE1 nor pVE2 displayed any homology with other plasmids isolated from moderate halophiles. The occurrence of similar plasmids in other strains of Halomonas eurihalina, isolated from hypersaline soils, has been detected. These small plasmids may be useful for the development of cloning vectors for moderately halophilic bacteria.  相似文献   

7.
Types and properties of some bacteria isolated from hypersaline soils   总被引:4,自引:2,他引:2  
Five rhizosphere soil samples from the dominant xerophytic plants, and nearby root-free soil samples were obtained from a series of hypersaline soils (5.0–10.7% NaCl) from sites near Alicante in Spain. Physico-chemical analyses were made, and the bacterial flora estimated using three different plating media. Counts from rhizosphere soil were always significantly higher than those from root-free soils. A total of 211 strains isolated were purified and identified to genus level; 12 could not be classified. The range of salt concentration allowing growth was determined for each isolate, but this did not correlate with the salt content of the soil habitat. Most isolates appeared to be typical moderate halophiles (with optimum growth between 5 and 15% salts), but about half of them grew on normal media with only 0.9% naCl, a notable difference from moderately halophilic aquatic bacteria. Extreme halophiles were rare but this may have been due to an insufficient incubation period.  相似文献   

8.
Halotolerant and halophilic microorganisms can grow in (hyper)saline environments, but only halophiles specifically require salt. Genotypic and phenotypic adaptations are displayed by halophiles; the halotolerants adapt phenotypically, but it is not established whether they show genotypic adaptation. This paper reviews the various strategies of haloadaptation of membrane proteins and lipids by halotolerant and halophilic microorganisms. Moderate halophiles and halotolerants adapt their membrane lipid composition by increasing the proportion of anionic lipids, often phosphatidylglycerol and/or glycolipids, which in the moderately halophilic bacteriumVibrio costicola appears to be part of an osmoregulatory response to minimize membrane stress at high salinities. Extreme halophiles possess typical archaebacterial ether lipids, which are genotypically adapted by having additional substitutions with negatively-charged residues such as sulfate. In contrast to the lipids, it is less clear whether membrane proteins are haloadapted, although they may be more acidic; very few depend on salt for their activity.  相似文献   

9.
The influence of pH and the salt concentration on the proton and sodium ion permeability of liposomes formed from lipids of the halophile Halobacterium salinarum and the haloalkaliphile Halorubrum vacuolatum were studied. In contrast with liposomes formed from Escherichia coli lipids, liposomes formed from halophilic lipids remained stable up to 4 M of NaCl and KCl. The proton permeability of the liposomes from lipids of halophiles was independent of the salt concentration and was essentially constant between pH 7 and pH 9. The sodium ion permeability increased with the salt concentration but was 10- to 100 fold lower than the proton permeability. It is concluded that the membranes of halophiles are stable over a wide range of salt concentrations and at elevated pH values and are well adapted to the halophilic conditions. Received: February 25, 1999 / Accepted: June 11, 1999  相似文献   

10.
Biology of Moderately Halophilic Aerobic Bacteria   总被引:32,自引:0,他引:32       下载免费PDF全文
The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms.  相似文献   

11.
The isolation of obligate halophilic aspergilli from the Dead Sea and the range of salt tolerance of halophilic fungi isolated, are reported here for the first time. The mycobiota of the Dead Sea isolated in this study, was dominated by Aspergillus and Penicillium species; Cladosporium were found in lesser numbers. All three genera were obtained from the water sample; however, Aspergillus was the only genus obtained from the sediment. There was significant difference in growth of each isolate at different salt concentrations and intraspecies analysis revealed dissimilarity in response of strains to different salt concentrations in the growth medium The isolates were euryhaline, with halotolerance up to 20–25% solar salt, Aspergillus and Penicillium species showing a higher level of halotolerance, as compared to that of Cladosporium. Halophilic fungi were found in greater numbers in the sediment sample as compared to that in the water sample. Penicillium and Cladosporium species were exclusively facultative halophiles, while some species of Aspergillus were facultative halophiles. All the obligate halophiles isolated, belonged to the genus Aspergillus and were identified as A. penicillioides and A unguis, the latter being a first record of the species from the Dead Sea.  相似文献   

12.
Abstract There exists a wide diversity of halophilic eubacteria with chemoorganotrophic-aerobic metabolism. Most of them have a more moderate salt response than halophilic archaebacteria, falling into the category of moderately halophilic bacteria. Although mostly isolated from salted food, their natural habitats are hypersaline waters of intermediate levels of salt concentration, and hypersaline soils. In hypersaline waters, the taxonomic groups found are the ones that also predominate in ocean waters, such as representatives of the genera Vibrio, Pseudomonas and Flavobacterium . However, in hypersaline soils, the taxonomic groups present are those typical of normal soils, such as Pseudomonas, Bacillus and Gram-positive cocci. The halophilic bacteria from soils are also more resistant to exposure to low salt concentrations than the organisms isolated from waters. Therefore, it seems that the general characteristics of the hypersaline environments drastically affect the types of halophilic bacteria present, and that the halophilic character has arisen in many phylogenetic groups of eubacteria.  相似文献   

13.
Although hypersaline environments have been extensively examined, only a limited number of microbial community studies have been performed in saline tide pools. We have studied a temporary salt-saturated tide pool and isolated prokaryotes from the water. Chlorinity measurements revealed that the tide pool brine could be characterized as one of the most hypersaline ecosystems on earth. Enumeration of microorganisms at different salinities showed that the tide pool was dominated by moderate halophiles. Based on 16S rRNA gene sequence analysis, the prokaryotic strains isolated were related to the bacterial genera Rhodovibrio, Halovibrio, Aquisalimonas, Bacillus and Staphylococcus and to the haloarchaeal species Haloferax alexandrinus. Four bacterial isolates were distantly related to their closest validly described species Aquisalimonas asiatica (96.5 % similarity), representing a novel phylogenetic linkage. Ecophysiological analysis also revealed distinct phenotypic profiles for the prokaryotic strains analyzed. The herbicide 2,4-dichlorophenoxyacetate could be effectively utilized by selected strains as the sole carbon source, but phenolic compounds could not be utilized by any of the halophilic isolates examined. None of the halophilic strains were able to grow without the presence of sea salt or seawater. Based on these results, we conclude that moderate halophilic bacteria rather than extremely halophilic archaea dominate in such a hypersaline environment.  相似文献   

14.
【背景】嗜盐微生物多生活于高盐环境,具有独特的生理代谢特征,是一类重要的极端环境微生物资源。【目的】为更好地认识我国陆相盐矿的嗜盐微生物多样性组成,更好地开发利用嗜盐微生物资源积累丰富的微生物菌种。【方法】对安徽定远盐矿盐芯样品进行嗜盐微生物的纯培养分离,并对所分离菌株进行基于16SrRNA基因的测序和序列相似性分析,并对所分离菌株进行物种多样性分析。在此基础上,对代表菌株进行菌落形态和耐盐度及酶活测定。【结果】通过纯培养共分离获得了嗜盐微生物264株,其中嗜盐古菌150株,占56.8%;嗜盐细菌114株,占43.2%。嗜盐古菌物种分别来自于Halorubrum、 Halopenitus、 Haloterrigena、 Natrinema、 Natronoarchaeum和Natronomonas等6个属;嗜盐细菌物种分别来自于Pseudomonas、Aliifodinibius、Halobacillus、Halomonas和Halospina等5个属。通过代表菌株的酶活平板检测,发现产胞外蛋白酶菌株1株,酯酶1株,淀粉酶2株;能液化明胶菌株2株。在物种多样性组成方面,发现嗜盐古菌的物种多样性指数高于嗜盐细菌。【结论】本研究对我国安徽定远陆相盐矿的可培养嗜盐微生物多样性进行探究,积累了丰富的嗜盐微生物菌株资源。  相似文献   

15.
新疆罗布泊周边地区极端环境嗜盐菌的研究   总被引:1,自引:0,他引:1  
为了研究分析新疆罗布泊周边地区pH值5-6的盐湖嗜盐古菌资源。从湖中分离筛选出一批嗜盐古菌,对其进行了生理生化特性研究,发现其中6株菌的生理特性和产酶特性比较特殊,并采用PCR方法扩增出其16SrRNA基因(16S rDNA),并测定了基因的核苷酸序列。基于16S rDNA序列的同源性比较以及16S rDNA序列的系统发育学研究表明,菌株B20-RDX是盐盒菌属Haloarchaeon属中新种成员,GenBank登录号为FJ561285,该菌株为革兰氏阴性菌,最适盐浓度25%,最适pH 8.0,能产过氧化氢酶、淀粉酶,对四环素有抗性,能利用精氨酸和丁二酸盐。迄今为止,国内极少有关罗布泊周边地区极端环境微生物研究的报道,该研究可为今后研究同类极端环境中新的物种资源开发应用以及微生物多样性研究提供素材和参考。  相似文献   

16.
Bacterial microorganisms that grow optimally at Na+ concentrations of 1.7 M, or the equivalent of 10% (w/v) NaCl, and greater are considered to be extreme halophiles. This review focuses on the correlation between the extent of alkaline pH and elevated temperature optima and the extent of salt tolerance of extremely halophilic eubacteria; the focus is on those with alkaline pH optima, above 8.5, and elevated temperature optima, above 50°C. If all three conditions are required for optimal growth, these microorganisms are termed "poly-extremophiles". However, only a very few extreme halophiles able to grow optimally under alkaline conditions as well as at elevated temperatures have been isolated so far. Therefore the question is: do the combined extreme growth conditions of the recently isolated poly-extremophiles, i.e., anaerobic halophilic alkalithermophiles, approach a physico-chemical boundary for life? These poly-extremophiles are of interest, as their adaptive mechanisms give insight into organisms' abilities to survive in environments which were previously considered prohibitive to life, as well as to possible properties of early evolutionary and extraterrestrial life forms.  相似文献   

17.
为了解柴达木盆地茶卡盐湖、柯柯盐湖和小柴旦盐湖等三大硫酸镁亚型高盐盐湖可分离嗜盐耐盐菌的种群多样性,采用RM中、高盐培养基筛选分离可培养的嗜盐菌和耐盐菌,扩增16S rRNA基因序列进行种属鉴定和环境因子典范对应分析(CCA),选取优势菌属构建系统发育树,并采用高效液相色谱法(HPLC)检测次级代谢产物四氢嘧啶(Ect...  相似文献   

18.
采用高盐的牛肉膏蛋白胨培养基(盐浓度为8%NaCl),研究江苏省盐城市盐场土壤里中度嗜盐菌的分布情况及种群特征。从盐城市的射阳、新滩、灌东三处盐场土壤中共采集和分离得到13株中度嗜盐菌。通过形态观察、生理生化分析、16S rRNA序列分析和系统进化分析等方法进行初步鉴定,结果表明:分离到的中度嗜盐菌分属3个属,Virgibacillus属4株、Halomonas属7株和Marinobacter属2株。研究结果揭示盐城市的盐场存在较为丰富的中度嗜盐菌,具有较高的研究和利用价值。  相似文献   

19.
The genetic relatedness among various strains of halophilic bacteria has been assessed by deoxyribonucleic acid-deoxyribonucleic acid (DNA-DNA) duplex formation and ribosomal ribonucleic acid (RNA) hybridization. All of the strains of extremely halophilic rods are closely related, and the extent of divergence of base sequence is similar for the major and minor DNA components. Parallel experiments with ribosomal RNA revealed a relationship between the extremely halophilic rods and cocci and a more distant relationship to moderate halophiles and to a photosynthetic extreme halophile. Renaturation studies of halophile DNA exclude the possibility that the satellite DNA represents multiple copies of a small episomal element. The kinetics of DNA renaturation show that the genome size of the extreme and moderate halophiles is similar to that of Escherichia coli.  相似文献   

20.
Halobacteria, members of the domain Archaea that live under extremely halophilic conditions, are often considered as dependable source for deriving novel enzymes, novel genes, bioactive compounds and other industrially important molecules. Protein antibiotics have potential for application as preserving agents in food industry, leather industry and in control of infectious bacteria. Halocins are proteinaceous antibiotics synthesized and released into the environment by extreme halophiles, a universal characteristic of halophilic bacteria. Herein, we report the production of halocin (SH10) by an extremely halophilic archeon Natrinema sp. BTSH10 isolated from salt pan of Kanyakumari, Tamilnadu, India and optimization of medium for enhanced production of halocin. It was found that the optimal conditions for maximal halocin production were 42 °C, pH 8.0, and 104 h of incubation at 200 rpm with 2% (V/V) inoculum concentration in Zobell’s medium containing 3 M NaCl, Galactose, beef extract, and calcium chloride as additional supplements. Results indicated scope for fermentation production of halocin for probable applications using halophilic archeon Natrinema sp. BTSH10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号