首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J N Engel  J Pollack  F Malik    D Ganem 《Journal of bacteriology》1990,172(10):5732-5741
Taking advantage of sequence conservation of portions of the alpha, beta, and beta' subunits of RNA polymerase of bacteria and plant chloroplasts, we have designed degenerate oligonucleotides corresponding to these domains and used these synthetic DNA sequences as primers in a polymerase chain reaction to amplify DNA sequences from the chlamydial genome. The polymerase chain reaction products were used as a probe to recover the genomic fragments encoding the beta subunit and the 5' portion of the beta' subunit from a library of cloned murine Chlamydia trachomatis DNA. Similar attempts to recover the alpha subunit were unsuccessful. Sequence analysis demonstrated that the beta subunit of RNA polymerase was located between genes encoding the L7/L12 ribosomal protein and the beta' subunit of RNA polymerase; this organization is reminiscent of the rpoBC operon of Escherichia coli. The C. trachomatis beta subunit overproduced in E. coli was used as an antigen in rabbits to make a polyclonal antibody to this subunit. Although this polyclonal antibody specifically immunoprecipitated the beta subunit from Chlamydia-infected cells, it did not immunoprecipitate core or holoenzyme. Immunoblots with this antibody demonstrated that the beta subunit appeared early in infection.  相似文献   

2.
The mechanism of expression of the overlapping genes that encode the alpha and beta subunits of aspartokinase II of Bacillus subtilis was studied by specific mutagenesis of the cloned coding sequence. Escherichia coli or B. subtilis VB31 (aspartokinase II-deficient), transformed with plasmids carrying either a deletion of the translation start site and about one-half of the coding region for the larger alpha subunit or a frameshift mutation early in the alpha subunit coding region, produced the smaller beta subunit in the absence of alpha subunit synthesis, indicating that beta subunit is not derived from alpha subunit and that its synthesis does not depend on the alpha subunit translation initiation site. The beta subunit translation start site was identified by oligonucleotide-directed mutagenesis of the putative translation start codon. Modification of the nucleotide sequence encoding methionine residue 247 of the alpha subunit from ATG to either TTA or AAT (but not GTG) abolished beta subunit synthesis but had no effect on the production of alpha subunit. This observation is consistent with peptide chain initiation by N-formylmethionine, which specifically requires an ATG or GTG sequence, and indicates that translation of the beta subunit starts at a site corresponding to Met247 of the alpha subunit. Initial studies on the function of the aspartokinase II subunits, using E. coli as a heterologous host, showed that beta subunit was not essential for the expression of the catalytic function of aspartokinase, measured in vitro and in vivo, nor for its allosteric regulation by L-lysine. Whether the beta subunit has a function specific to B. subtilis needs to be explored in a homologous expression system.  相似文献   

3.
4.
To analyze relationships between the ternary and primary structures of the beta subunit of Escherichia coli F1 ATPase, we prepared two monoclonal antibodies beta 12 and beta 31 against the beta peptide. These antibodies bind to the beta subunit but do not bind to the F1 ATPase, resulting in no inhibition of the ATPase activities. Several different portions of the beta subunit peptide were prepared by constructing expression plasmids carrying the corresponding DNA segment of the beta subunit gene amplified by the polymerase chain reaction. Western blotting analysis using these peptides revealed that the antibodies bound to a peptide of 104 amino acid residues from the amino terminal end, which is outside the previously estimated catalytic domain between residues 140 and 350. These results indicated that the amino terminal portion of the maximal 104 residues is not exposed to the surface of the F1 ATPase. The binding spectrum of the antibodies to the subunit from various species including Vibrio alginolyticus and thermophilic bacterium PS3 indicated possible epitope sequences within the 104 residues. The ternary structure of the beta subunit, in terms of cleavage sites by endopeptidases, was analyzed using the antibodies. A 43-kDa peptide without binding ability to beta 12 and beta 31 appeared upon cleavage by lysyl endopeptidase. The results suggested that lysyl residues from around 70 to 100 from the amino terminus are exposed to the surface of the beta subunit.  相似文献   

5.
Functionally equivalent subunits of RNA polymerase from Micrococcus luteus and Escherichia coli differ from each other in many molecular and antigenic properties. In spite of these differences, subunit alpha from E. coli and subunit beta from M. luteus form a complex alpha2beta, when incubated together. This complex binds rifampicin tightly, which the isolated subunits do not. The hybrid complex is very similar in its properties to the complex alpha2beta formed only from E. coli or M. luteus subunits. Since the sub-assembly alpha2beta from E. coli is reported to be an obligatory intermediate in the assembly process of complete RNA polymerase, the newly described hybrid sub-assembly may function similarly as an intermediate in the formation of the hybrid form of RNA polymerase described earlier.  相似文献   

6.
R C Payne  B P Nichols  S M Hecht 《Biochemistry》1987,26(11):3197-3205
A cell-free protein biosynthesizing system prepared from Escherichia coli CF300 was found to synthesize E. coli tryptophan synthase alpha subunit in a time-dependent manner when programmed with pBN69 plasmid DNA. This plasmid contains the trp promoter from Serratia marcescens adjacent to the coding region of E. coli tryptophan synthase alpha protein [Nichols, B.P., & Yanofsky, C. (1983) Methods Enzymol. 101, 155-164]. The synthesized tryptophan synthase alpha subunit was found to be indistinguishable from authentic alpha subunit protein when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and to have the same specific activity for catalyzing the conversion of indole----L-tryptophan by tryptophan synthase beta 2 subunit, as well as the conversion of indole + glyceraldehyde 3-phosphate to indole-3-glycerol phosphate. In the absence of exogenously added phenylalanine, admixture of E. coli phenylalanyl-tRNAPhe to the protein biosynthesizing system stimulated the production of functional alpha protein; the analogous result was obtained when valine was replaced by E. coli valyl-tRNAVal. The ability of a misacylated tRNA to participate in alpha protein synthesis in this system was established by the use of E. coli phenylalanyl-tRNAVal in the absence of added valine. Protein biosynthesis proceeded normally and gave a product having the approximate molecular weight of tryptophan synthase alpha subunit; as expected, this polypeptide lacked catalytic activity.  相似文献   

7.
cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most of the expressed proteins were produced in an insoluble form. The recombinant CKII alpha subunit was purified by DEAE-cellulose chromatography, followed by phosphocellulose and heparin-agarose chromatography. The recombinant CKII beta subunit was extracted from the insoluble pellet and purified in a single step on phosphocellulose. From 10 g bacterial cells, the yield of soluble protein was 12 mg alpha subunit and 5 mg beta subunit. SDS/PAGE analysis of the purified recombinant proteins indicated molecular masses of 42 kDa and 26 kDa for the alpha and beta subunits, respectively, in agreement with the molecular masses determined for the subunits of the native enzyme. The recombinant alpha subunit exhibited protein kinase activity which was greatest in the absence of monovalent ions. With increasing amounts of salt, alpha subunit kinase activity declined rapidly. Addition of the beta subunit led to maximum stimulation at a 1:1 ratio of both subunits. Using a synthetic peptide (RRRDDDSDDD) as a substrate, the maximum protein kinase stimulation observed was fourfold under the conditions used. The Km of the reconstituted enzyme for the synthetic peptide (80 microM) was comparable to the mammalian enzyme (40-60 microM), whereas the alpha subunit alone had a Km of 240 microM. After sucrose density gradient analysis, the reconstituted holoenzyme sedimented at the same position as the mammalian CKII holoenzyme.  相似文献   

8.
Respiratory nitrate reductase purified from the cell membrane of Escherichia coli is composed of three subunits, alpha, beta, and gamma, which are encoded, respectively, by the narG, narH, and narI genes of the narGHJI operon. The product of the narJ gene was deduced previously to be a highly charged, acidic protein which was not found to be associated with any of the purified preparations of the enzyme and which, in studies with putative narJ mutants, did not appear to be absolutely required for formation of the membrane-bound enzyme. To test this latter hypothesis, the narJ gene was disrupted in a plasmid which contained the complete narGHJI operon, and the operon was expressed in a narG::Tn10 insertion mutant. The chromosomal copy of the narJ gene of a wild-type strain was also replaced by the disrupted narJ gene. In both cases, when nar operon expression was induced, the alpha and beta subunits accumulated in a form which expressed only very low activity with either reduced methyl viologen (MVH) or formate as electron donors, although an alpha-beta complex separated from the gamma subunit is known to catalyze full MVH-linked activity but not the formate-linked activity associated with the membrane-bound complex. The low-activity forms of the alpha and beta subunits also accumulated in the absence of the NarJ protein when the gamma subunit (NarI) was provided from a multicopy plasmid, indicating that NarJ is essential for the formation of the active, membrane-bound complex. When both NarJ and NarI were provided from a plasmid in the narJ mutant, fully active, membrane-bound activity was formed. When NarJ only was provided from a plasmid in the narJ mutant, a cytosolic form of the alpha and beta subunits, which expressed significantly increased levels of the MVH-dependent activity, accumulated, and the alpha subunit appeared to be protected from the proteolytic clipping which occurred in the absence of NarJ. We conclude that NarJ is indispensible for the biogenesis of membrane-bound nitrate reductase and is involved either in the maturation of a soluble, active alpha-beta complex or in facilitating the interaction of the complex with the membrane-bound gamma subunit.  相似文献   

9.
Partial digestion of the native beta subunit of F1-ATPase from the thermophilic Bacillus strain PS3 by three different proteases produced a limited number of peptide fragments. In most cases, the peptides remained associated, and the gross structure of the beta subunit was not destroyed. Furthermore, most peptides were able to reassociate into the form of the beta subunit after denaturating urea treatment. Therefore, the cleaved sites are most likely located in water-exposed loop regions in the tertiary structure of the protein. Almost all peptides were analyzed, and 17 cleaved sites were determined. From the analysis of the distribution of cleaved sites and deletions or insertions in the multiple amino acid sequence alignment of proteins homologous to the beta subunit, locations of five loops and four candidate loops in the beta subunit are suggested. There are two large loops in the central region of the beta subunit sequence, and dicyclohexylcarbodiimide-reactive Glu190 is located in one of them. Tyr341, involved in putative catalytic ATP binding, is also found in one of the loops. Then, taking cleaved sites as a reference, two kinds of expression plasmids, each of which carried genes of two complementary peptide fragments, 1-193 and 198-473 or 1-284 and 285-473, were constructed and expressed in Escherichia coli. For each plasmid, two peptides were coexpressed, associated into a stable beta subunit form in E. coli cells, and purified without dissociation. When these beta subunits were denatured by urea and applied to polyacrylamide gel without denaturant, a protein band with the same mobility as that of the beta subunit appeared, indicating that reassociation of peptide fragments into the form of the beta subunit occurred upon removal of urea. These beta subunits retained the ability to reconstitute the alpha 3 beta 3 gamma complexes even though the efficiency of reconstitution and the recovered ATPase activities were decreased. These complexes were stable at high or low temperature, and ATPase activities were sensitive to inhibition by N3-.  相似文献   

10.
The gene coding for the subunits of aspartokinase II from Bacillus subtilis has been identified in a B. subtilis DNA library and cloned in a bacterial plasmid (Bondaryk, R. P., and Paulus, H. (1984) J. Biol. Chem. 259, 585-591). The introduction of a plasmid carrying the aspartokinase II gene into an auxotrophic Escherichia coli strain lacking all three aspartokinases restored its ability to grow in the absence of L-lysine, L-threonine, and L-methionine. The B. subtilis aspartokinase gene could thus be functionally expressed in E. coli and substitute for the E. coli aspartokinases. Measurement of aspartokinase levels in extracts of aspartokinaseless E. coli transformed with the B. subtilis aspartokinase II gene revealed an enzyme level comparable to that in a genetically derepressed B. subtilis strain. In spite of the high level of aspartokinase, the growth of the transformed E. coli strain was severely inhibited by the addition of L-lysine but could be restored by also adding L-homoserine. This apparently paradoxical sensitivity to lysine was due to the allosteric inhibition of B. subtilis aspartokinase II by that amino acid, a property which was also observed in extracts of the transformed E. coli strain. The synthesis and degradation of the aspartokinase II subunits were measured by labeling experiments in E. coli transformed with the B. subtilis aspartokinase II gene. In contrast to exponentially growing cells of B. subtilis which contained equimolar amounts of the aspartokinase alpha and beta subunits, the transformed E. coli strain contained a 3-fold molar excess of beta subunit. Pulse-chase experiments showed that the disproportionate level of beta subunit was not due to more rapid turnover of alpha subunit, both subunits being quite stable, but presumably to a more rapid rate of synthesis. After the addition of rifampicin, the synthesis of alpha subunit declined much more rapidly than that of beta subunit, indicating that the two subunits were translated independently from mRNA species that differ in functional stability. In conjunction with the results described in the preceding paper which demonstrated that the aspartokinase subunits are encoded by a single DNA sequence, these observations imply that the alpha and beta subunits of B. subtilis aspartokinase II are the products of in-phase overlapping genes.  相似文献   

11.
The modeling of the rotatory mechanism performed by the F(1)-ATPase complex during ATP synthesis shows that the beta, but not the alpha subunit, undergoes large conformational changes that depend on the occupancy of the catalytic site. Here we determined by fluorescence spectroscopy the changes in tertiary structure and hydrophobic exposed area of the isolated alpha and beta subunits of the F(1)-ATPase complex from Escherichia coli upon adenine nucleotide binding. The results show that in the absence of intersubunit contacts, the two subunits exhibit markedly similar conformational movements.  相似文献   

12.
Autogenous regulation of RNA polymerase beta subunit synthesis in vitro.   总被引:4,自引:0,他引:4  
The effects of Escherichia coli RNA polymerase and its subassemblies and subunits on the in vitro synthesis of beta subunit directed by DNA from a lambda transducing phage lambdadrif+-6 were investigated. This phage carries the structural gene (rpoB) for beta subunit as well as the genes for EF (translation elongation factor)-Tu, some ribosomal proteins, and stable RNAs of the E. coli chromosome. Among the RNA polymerase proteins examined, the two oligomers, holoenzyme and alpha2beta complex, repressed the synthesis of only the beta subunit but not of other proteins encoded by the phage DNA. The results indicate that the expression of at least the betabeta' (rpoBC) operon is under autogenous regulation, in which both holoenzyme and alpha2beta complex function as regulatory molecules with repressor activity.  相似文献   

13.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

14.
15.
The rate of quenching of the fluorescence of pyridoxal 5'-phosphate in the active site of the beta 2 subunit of tryptophan synthase from Escherichia coli was measured to estimate the accessibility of the coenzyme to the small molecules iodide and acrylamide. The alpha subunit and the substrate L-serine substantially reduced the quenching rate. For iodide, the order of decreasing quenching was: Schiff's base of N alpha-acetyl-lysine with pyridoxal 5'-phosphate greater than holo beta 2 subunit greater than holo alpha 2 beta 2 complex approximately equal to holo beta 2 subunit + L-serine greater than holo alpha 2 beta 2 complex + L-serine. The coenzyme in the beta 2 subunit is apparently freely accessible to both iodide and acrylamide (kappa approximately equal to 2 X 10(9) M-1 s-1), but the alpha subunit and L-serine decrease the rate by factors of 2-5. Quenching of the fluorescence of the single tryptophan residue of the beta 2 subunit revealed that the apo and holo forms exist in different states, whereas the alpha subunit stabilizes a third conformation. As the alpha subunit binds to the beta 2 subunit, the tryptophan residue, which is within 2.2 nm of the active site of the beta 2 subunit, probably rotates with respect to the plane of the ring of the coenzyme, such that fluorescence energy transfer from tryptophan to pyridoxal phosphate is greatly reduced. The alpha subunit strongly protects the active-site ligand indole propanol phosphate from quenching with acrylamide, consistent with the active site being deep in a cleft in the protein. Iodide induces dissociation of the holo alpha 2 beta 2 complex [E. W. Miles & M. Moriguchi (1977) J. Biol. Chem. 252, 6594-6599]. The effect of iodide on the fluorescence properties of holo alpha 2 beta 2 complex allows us to estimate an upper limit for the dissociation constant for the alpha 2 beta 2 complex of 10(-8) M, in the absence of iodide.  相似文献   

16.
17.
The gene rpoB (rifD 18), which encodes rifampicin-resistant beta subunit of Escherichia coli RNA polymerase, has been placed on an overexpression plasmid under the control of bacteriophage T7 promoter. Induction of the T7 RNA polymerase gene in the host cells resulted in extensive overproduction of the beta polypeptide. Most of the overproduced material was recovered from cell lysates in insoluble form and was solubilized by extraction with 6 M urea. Purified overproduced beta subunit was added, in molar excess, to urea-denatured rifampicin-sensitive RNA polymerase. Upon removal of urea by dialysis, the reconstituted enzyme became rifampicin-resistant, indicating that overproduced beta subunit can be efficiently assembled into functional holoenzyme.  相似文献   

18.
1. 8-Azido-ATP is a substrate for Escherichia coli (Ca2+ + Mg2+)-ATPase (E. coli F1). 2. Illumination of E. coli F1 in the presence of 8-azido-ATP causes inhibition of ATPase activity. The presence of ATP during illumination prevents inhibition. 3. 8-Azido-ATP and 4-chloro-7-nitrobenzofurazan (NbfCl) bind predominantly to the alpha subunit of the enzyme, but also significantly to the beta subunit. 4. The alpha subunit of E. coli F1 seems to have some properties that in other F1-ATPases are associated with the beta subunit.  相似文献   

19.
We describe a method for rapid purification of the integration host factor (IHF) homolog of Rhodobacter capsulatus that has allowed us to obtain microgram quantities of highly purified protein. R. capsulatus IHF is an alpha beta heterodimer similar to IHF of Escherichia coli. We have cloned and sequenced the hip gene, which encodes the beta subunit. The deduced amino acid sequence (10.7 kDa) has 46% identity with the beta subunit of IHF from E. coli. In gel electrophoretic mobility shift DNA binding assays, R. capsulatus IHF was able to form a stable complex in a site-specific manner with a DNA fragment isolated from the promoter of the structural hupSL operon, which contains the IHF-binding site. The mutated IHF protein isolated from the Hup- mutant IR4, which is mutated in the himA gene (coding for the alpha subunit), gave a shifted band of greater mobility, and DNase I footprinting analysis has shown that the mutated IHF interacts with the DNA fragment from the hupSL promoter region differently from the way that the wild-type IHF does.  相似文献   

20.
J P Issartel  P V Vignais 《Biochemistry》1984,23(26):6591-6595
The nucleotide binding capacity and affinity of the isolated beta subunit from Escherichia coli F1-ATPase have been studied with radiolabeled ADP and ATP by an equilibrium dialysis technique. Each mole of beta subunit in the presence of EDTA bound 1 mol of ADP or ATP with Kd values of 25 microM and 50-100 microM, respectively. At a saturating concentration, aurovertin enhanced the affinity of ADP or ATP for the isolated beta subunit by 3-6-fold. The Kd values for the binding of ADP or ATP were also assessed through the enhancing effect of ADP on [14C]aurovertin binding (Issartel, J.-P., Klein, G., Satre, M., & Vignais, P.V. (1983) Biochemistry 22, 3485-3492); the Kd values determined by this approach were several times lower than in the absence of aurovertin, in agreement with results obtained by direct titration with radiolabeled ADP or ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号