首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Though one prominent theory of atherogenesis involves free-radical oxidation of low-density lipoprotein (LDL) within the vessel wall by one of the vascular cell types, the mechanism for cell-mediated LDL oxidation remains unclear[sn1]. In these studies we examined the effects of media phenols, thiols, and metals on endothelial cell-mediated oxidation. We found that cell culture media such as Dulbecco modified Eagle medium and minimal essential medium are unable to support cell-mediated oxidation of LDL because they contain high concentrations of phenol red (PR) and tyrosine, both of which strongly inhibit cell-mediated oxidation. Ham's F-10, a commonly used medium for cell-mediated oxidation experiments, is also not entirely appropriate, as it contains both PR and cysteine. Cysteine is not critical for endothelial cell-mediated oxidation, but does increase oxidation of LDL in the absence of cells. Finally, of utmost importance to cell-mediated oxidation was the presence of either micromolar concentrations of Fe(II) or physiological concentrations of holo-ceruloplasmin, the protein which carries copper in plasma. An appropriate culture medium for use in cell-mediated oxidation experiments should thus contain either micromolar concentrations of Fe(II) or physiological concentrations of holo-ceruloplasmin, and should be prepared without PR, cysteine, or large concentrations of tyrosine, all of which are shown here to inhibit endothelial cell-mediated LDL oxidation. These results are consistent with a mechanism of cell-mediated oxidation involving Fenton-type chemistry and redox cycling of the metal.  相似文献   

2.
Antioxidant BO-653 and human macrophage-mediated LDL oxidation   总被引:2,自引:0,他引:2  
Oxidation of LDL is now widely accepted to be involved in atherogenesis. The aim of this study was to examine the effect of BO-653, a strong radical scavenger and antioxidant, on oxidation of LDL by human macrophages in vitro. Fifty microg/ml LDL protein was incubated with macrophages in Ham's F10 medium, supplemented with additional Fe2+, for up to 48 h. Then the medium was analysed by LDL agarose gel electrophoresis, the thiobarbituric acid assay and gas chromatography. In the absence of added exogenous antioxidants, after 24h LDL oxidation produced 30.48 nmoles MDA equivalents/mg LDL protein and a relative electrophoretic mobility of 4.74. Linoleic acid (18:2), arachidonic acid (20:4) and cholesterol were depleted and 7beta-hydroxycholesterol was generated. BO-653 completely inhibited this cell-mediated oxidation of LDL in concentrations as low as 5 microM, being more effective than either alpha-tocopherol or probucol, which completely inhibited oxidation at 200 and 80 microM and only partially at 80 and 8 microM, respectively. This inhibition of cell-mediated LDL oxidation was not due to toxicity, as alpha-tocopherol, probucol and BO-653 were not toxic for the macrophages at the concentrations tested. Eighty microM alpha-tocopherol, 8 microM probucol and 5 microM BO-653 significantly reduced the toxicity to the oxidising culture caused by LDL oxidation. The results show that in this system BO-653 is a more effective antioxidant than alpha-tocopherol or probucol.  相似文献   

3.
Reduced glutathione and other compounds with free -SH groups promoted the oxidation of low-density lipoprotein (LDL) in the absence of cells in Ham's F-10 medium. In contrast, compounds in which the thiol groups were oxidized or blocked were ineffective in oxidizing LDL. Thiol-induced modification of LDL did not occur in media lacking in redox metals. It is suggested that thiols react with redox metal, generating thiol- and oxygen-derived free radicals that promote modification of LDL.  相似文献   

4.
The extent to which cells can oxidize LDL may be underestimated because of the use of standard and arbitrary 24 hour in vitro incubations of cells with LDL. Such incubations have resulted in inconsistent results regarding the ability of cell-mediated LDL oxidation to generate relatively advanced oxidation products such as 7-ketocholesterol (7-KC). We studied prolonged oxidation of low density lipoprotein (LDL) by mouse peritoneal macrophages using HPLC measurement of cholesterol, cholesteryl esters and their oxidation products 7-KC and cholesteryl linoleate hydroperoxide (CL-OOH). Cell-mediated oxidation in Ham's F10 consistently followed the successive stages previously described during 24 hour-10 μM copper-mediated LDL oxidation, always generating 7-KC if allowed to proceed for sufficient time. The degree of inhibition of LDL oxidation achieved by metal chelators EDTA and DTPA at more advanced stages of cell-mediated LDL oxidation was not predictable from the published effects of such chelators upon early stages of metal-mediated and cell-mediated LDL oxidation. EDTA and DTPA only incompletely prevented the consumption of cholesteryl esters and the loss of preformed CL-OOH when added after cell-mediated LDL oxidation was established, while effectively concurrently inhibiting the generation of 7-KC. These data indicate that progressive cell-mediated peroxidation of LDL cholesteryl esters and decomposition of CL-OOH may be less dependent upon a continuing supply of redox active metals than is the generation of 7-KC. In addition, they confirm the plausibility of prolonged cell-mediated oxidation of LDL as a source of oxysterols found in human atherosclerotic plaque, and imply that active redox cycling of metals is particularly important for their generation in vivo.  相似文献   

5.
1. Mouse resident peritoneal macrophages in culture modified human 125I-labelled low-density lipoprotein (LDL) to a form that other macrophages took up about 10 times as fast as unmodified LDL. The modified LDL was toxic to macrophages in the absence of serum. 2. There was a lag phase of about 4-6 h before the LDL was modified so that macrophages took it up faster. A similar time lag was observed when LDL was oxidized by 5 microM-CuSO4 in the absence of cells. 3. LDL modification was maximal when about 1.5 x 10(6) peritoneal cells were plated per 22.6 mm-diam. well. 4. Re-isolated macrophage-modified LDL was also taken up much faster by macrophages, indicating that the increased uptake was due to a change in the LDL particle itself. 5. Micromolar concentrations of iron were required for the modification of LDL by macrophages to take place. The nature of the other components in the culture medium was also important. Macrophages would modify LDL in Ham's F-10 medium but not in Dulbecco's modified Eagle's medium, even when iron was added to it. 6. The macrophage-modified LDL appeared to be taken up almost entirely via the acetyl-LDL receptor. 7. LDL modification by macrophages was inhibited partially by EDTA and desferrioxamine and completely by the general free radical scavengers butylated hydroxytoluene, vitamin E and nordihydroguaiaretic acid. It was also inhibited completely by low concentrations of foetal calf serum and by the anti-atherosclerotic drug probucol. It was not inhibited by the cyclo-oxygenase inhibitors acetylsalicylic acid and indomethacin. 8. Macrophages are a major cellular component of atherosclerotic lesions and the local oxidation of LDL by these cells may contribute to their conversion into cholesterol-laden foam cells in the arterial wall.  相似文献   

6.
Carotenoids may protect low-density lipoprotein from oxidation, a process implicated in the development of atherosclerosis. Our previous studies showed that in vitro enrichment of low-density lipoprotein (LDL) with beta-carotene protected it from cell-mediated oxidation. However, in vitro enrichment with either lutein or lycopene actually enhanced oxidation of the LDL. In the present studies we have examined the impact of LDL carotenoid content on its oxidation by human aortic endothelial cells (EaHy-1) in culture, comparing the effects of in vivo supplementation with in vitro enrichments. The beta-carotene content in human LDL was increased three- to sixfold by daily supplementation with 15 mg beta-carotene for 4 weeks, and the lycopene content of LDL in other individuals was increased two- to threefold by ingestion of one glass (12 ounce) of tomato juice daily for 3 weeks. LDL isolated from these healthy, normolipidemic donors not taking supplemental carotenoid was incubated at 0.25 mg protein/ml with EaHy-1 cells in Ham's F-10 medium for up to 48 h. Following dietary beta-carotene supplementation, LDL oxidation (as assessed by formation of lipid hydroperoxides) was markedly inhibited, to an even greater extent than was observed for LDL enriched in vitro with beta-carotene (that resulted in an 11- to 12-fold increase in LDL beta-carotene). No effect on cell-mediated oxidation was observed, however, for LDL enriched in vivo with lycopene. Thus, beta-carotene appears to function as an antioxidant in protecting LDL from cell-mediated oxidation although lycopene does not. The fact that the three- to sixfold enrichments of LDL with beta-carotene achieved by dietary supplementation were more effective in inhibiting oxidation than the 11- to 12-fold enrichments achieved by an in vitro method suggests that dietary supplementation is a more appropriate procedure for studies involving the enrichment of lipoprotein with carotenoids.  相似文献   

7.
Oxidation of low density lipoproteins (LDL) results in changes to the lipoprotein particle that are potentially pro-atherogenic. To investigate mechanisms contributing to the formation of cholesteryl ester (CE)-core aldehydes (9-oxononanoyl- and 5-oxovaleroyl-cholesterol; 9-ONC and 5-OVC, respectively) LDL was incubated in the presence of mouse macrophages (J774 cells) under different culture conditions. Here we demonstrate that the formation of core aldehydes occurs only in transition metal-containing HAM's F10 medium but not in Dulbecco's modified Eagle's medium (DMEM), independent of supplementation with iron and copper at concentrations up to ten times higher than present in HAM's F10. The antioxidative properties of DMEM could be ascribed to the higher amino acid and vitamin content as compared to HAM's F10 medium. Supplementation with these components efficiently inhibited LDL oxidation in HAM's F10. Stimulation of J774 cells with phorbol ester (PMA) resulted in significantly enhanced 9-ONC and 5-OVC formation rates that were accompanied by increased consumption of LDL cholesteryl linoleate (Ch18:2) and cholesteryl arachidonate (Ch20:4) in the cellular supernatant. In PMA (10 ng/ml) activated cells, approximately 5% of Ch18:2 contained in LDL was converted to 9-ONC and 4% of Ch20:4 was converted to 5-OVC. With respect to core aldehyde formation, lipopolysaccharide (LPS, 10 microg/ml) was a less effective stimulant as compared to PMA. Part of the core aldehydes accumulated within the cells.Our study demonstrates that i) J774 macrophages are able to promote/accelerate core aldehyde formation in HAM's F10 medium, and ii) that core aldehyde formation rates can be increased by stimulation of the cells with PMA, and, although to a lesser extent, with LPS. Finally we could show that iii) a small amount of the core aldehydes is internalized by J774 macrophages.  相似文献   

8.
The oxidative modification of low density lipoprotein (LDL) has been implicated in the early stage of atherosclerosis through multiple potential pathways, and 12/15-lipoxygenase is suggested to be involved in this oxidation process. We demonstrated previously that the 12/15-lipoxygenase overexpressed in mouse macrophage-like J774A.1 cells was required for the cell-mediated LDL oxidation. However, the mechanism of the oxidation of extracellular LDL by the intracellular 12/15-lipoxygenase has not yet been elucidated. In the present study, we found that not only the LDL receptor but also LDL receptor-related protein (LRP), both of which are cell surface native LDL-binding receptors, were down-regulated by the preincubation of the cells with cholesterol or LDL and up-regulated by lipoprotein-deficient serum. Moreover, 12/15-lipoxygenase-expressing cell-mediated LDL oxidation was decreased by the preincubation of the cells with LDL or cholesterol and increased by the preincubation with lipoprotein-deficient serum. Heparin-binding protein 44, an antagonist of the LDL receptor family, also suppressed the cell-mediated LDL oxidation in a dose-dependent manner. The cell-mediated LDL oxidation was dose-dependently blocked by an anti-LRP antibody but not by an anti-LDL receptor antibody. Furthermore, antisense oligodeoxyribonucleotides against LRP reduced the cell-mediated LDL oxidation under the conditions in which the expression of LRP was decreased. The results taken together indicate that LRP was involved essentially for the cell-mediated LDL oxidation by 12/15-lipoxygenase expressed in J774A.1 cells, suggesting an important pathophysiological role of this receptor-enzyme system as the initial trigger of the progression of atherosclerosis.  相似文献   

9.
Faure P  Oziol L  Le Bihan ML  Chomard P 《Biochimie》2004,86(6):373-378
In vitro cell-induced low-density lipoprotein (LDL) oxidation is a model frequently used for studies on antioxidant compounds which may be potentially antiatherogens. Using Cu2+ or the free radical generator 2,2'-azobis-[2-amidinopropane] dihydrochloride (AAPH) to oxidize human LDL, we showed that the cell culture media Ham's F10 and RPMI are potent antioxidants which reduce LDL-protective effect of various thyroid compounds. The culture media interfered with the compounds depending on their mechanism of action, and RPMI had the greatest antioxidant effect, completely hiding antioxidant efficiency of the compounds whatever the prooxidant agent was. We suggest some recommendations for study of antioxidant compounds using cell-induced LDL oxidation models.  相似文献   

10.
Neoplastic, epithelial cells derived from a spontaneously-arising rat mammary carcinoma have been cultured in a defined medium, in the absence of serum, continuously, for over 2 years. The medium is a mixture of Ham's F12 and Dulbecco's Modified Eagle's media supplemented with insulin, transferrin and bovine serum albumin. The cells have retained their potential to produce tumours and, in culture, a true vertebrate collagenase.This system provides a continuing supply of vertebrate collagenase through the application of recently developed methods.  相似文献   

11.
Summary We have compared hormone production by early gestation and term human placental trophoblasts cultured in Ham's F10 medium containing 10% fetal bovine serum with that by cells cultured in serum-free HB102 medium. Mean daily production of progesterone on Days 3 to 7 was approximately 25% less by both early gestation and term cells cultured in HB102 as compared to Ham's F10, but production was maintained at a stable level for at least 7 d longer than the cells in Ham's. Estradiol production from 10−6 M dehydroepiandrosterone by both early gestation and term cells was comparable in both media. Human placental lactogen production on Days 3 to 7 was 40% less by cells cultured in HB102. Human chorionic gonadotropin (hCG) output by early gestation cells was also 50% less in HB102 but term cells in HB102 produced twice as much hCG as those in Ham's F10. 3B-Hydroxysteroid dehydrogenase (3BHSD) activity in early gestation and term cells and 11B-hydroxysteroid dehydrogenase (11BHSD) activity of early gestation cultures was comparable in the two media. 11BHSD activity was decreased in the term cultures, and this decrease was more marked in Ham's than in HB102. Sulfatase and aromatase activities in the early gestation cultures were comparable in both media; sulfatase activity was comparable and aromatase activity only 20% less in the term cells cultured in HB102. These results indicate that serum-free HB102 supports differential function of human trophoblast cells and is useful for studies of placental activity for as long as 14 d in culture.  相似文献   

12.
The extent of in vitro Cu(2+)-dependent oxidation of low-density lipoproteins (LDL) has been reported to vary widely depending upon reaction conditions. In this study, the effect of proteins and amino acids on Cu(2+)-induced LDL oxidation was examined. Treatment of LDL with 5 microM CuSO4 for 18 h in either phosphate-buffered saline (PBS) or Ham's F-10 medium resulted in extensive oxidation as determined by the content of thiobarbituric acid reactive substances (TBARS) and by increased lipoprotein electronegativity. In PBS, oxidation was entirely blocked by histidine and the tripeptide, gly-his-lys (GHK). Oxidation was also prevented by bovine serum albumin, but superoxide dismutase (SOD) provided only 20% protection. Both proteins bound similar amounts of Cu2+, but albumin appeared to be a more effective peroxyl radical trap as evidenced by its ability to prevent LDL oxidation induced by 2,2'-azo-bis(2-amidinopropane hydrochloride). In F-10 medium, SOD had marked inhibitory effects, in contrast to PBS. The addition of disulfides to PBS markedly enhanced the ability of SOD to inhibit oxidation. These results indicate that medium components which affect Cu2+ availability influence LDL oxidation and suggest that albumin is ideally suited as a plasma antioxidant to prevent oxidative modification of LDL. Furthermore, in certain instances, the inhibitory effects of SOD may be attributable to effects such as Cu2+ binding rather than dismutation of superoxide.  相似文献   

13.
Growth hormone (GH) is enhanced in malnutrition; physiological increments in GH secretion seem to play an important role in regulating metabolism during fasting. Leptin has also been shown to play a role, amongst others, in modulating the somatotropic axis. In this study, we investigated how the composition of culture media could influence basal and leptin-stimulated GH secretion and expression in pig pituitary cells. Pituitary cells from 8-month-old sows were incubated for 48 h in presence and absence of 10% fetal calf serum, either in DMEM/Ham's F12, in arginine-free DMEM/Ham's F-12, or in DMEM/Ham's F12 Salts. Cells were then treated for 24 h with GHRH or recombinant human leptin (rhLep) individually or in association with GHRH; cell proliferation, nitric oxide (NO) production and GH expression and secretion were determined. The absence of nutritional factors induced a decrease in cell proliferation, but stimulated both GH secretion and expression. Furthermore, rhLep significantly increased GH expression and secretion irrespective of culture conditions. NO production was only significantly enhanced by leptin under DMEM/Ham's F12 culture conditions. These observations lead us to hypothesize that the adaptive capabilities of pituitary cells may overcome the negative effects of undernutrition; in this context, leptin does not seem to depend on NO pathways in modulating GH secretion.  相似文献   

14.
Oxidized LDL is highly atherogenic as it stimulates macrophage cholesterol accumulation and foam cell formation, it is cytotoxic to cells of the arterial wall and it stimulates inflammatory and thrombotic processes. LDL oxidation can lead to its subsequent aggregation, which further increases cellular cholesterol accumulation.All major cells in the arterial wall including endothelial cells, smooth muscle cells and monocyte derived macrophages can oxidize LDL. Macrophage-mediated oxidation of LDL is probably a hallmark in early atherosclerosis, and it depends on the oxidative state of the LDL and that of the macrophages. The LDL oxidative state is elevated by increased ratio of poly/mono unsaturated fatty acids, and it is reduced by elevation of LDL-associated antioxidants such as vitamin E, -carotene, lycopene, and polyphenolic flavonoids.The macrophage oxidative state depends on the balance between cellular NADPH -oxidase and the glutathione system. LDL-associated polyphenolic flavonoids which inhibit its oxidation, can also reduce macrophage oxidative state, and subsequently the cell-mediated oxidation of LDL. Oxidation of the macrophage lipids, which occurs under oxidative stress, can lead to cell-mediated oxidation of LDL even in the absence of transition metal ions ,and may be operable in vivo.Finally, elimination of Ox-LDL from extracellular spaces, after it was formed under excessive oxidative stress, can possibly be achieved by the hydrolytic action of HDL-associated paraoxonase on lipoprotein's lipid peroxides. The present review article summarizes the above issues with an emphasis on our own data.  相似文献   

15.
Several lines of evidence indicate that oxidized LDL (Ox-LDL) may promote atherogenesis. Hence, the role of antioxidants in the prevention of LDL oxidation needs to be determined. beta-Carotene, in addition to being an efficient quencher of singlet oxygen, can also function as a radical-trapping antioxidant. Since previous studies have failed to show that beta-carotene inhibits LDL oxidation, we re-examined its effect on the oxidative modification of LDL. For these studies, LDL was oxidized in both a cell-free (2.5 microM Cu2+ in PBS) and a cellular system (human monocyte macrophages in Ham's F-10 medium). beta-Carotene inhibited the oxidative modification of LDL in both systems as evidenced by a decrease in the lipid peroxide content (thiobarbituric-acid-reacting substances activity), the negative charge of LDL (electrophoretic mobility) and the formation of conjugated dienes. By inhibiting LDL oxidation, beta-carotene substantially decreased its degradation by macrophages. beta-Carotene (2 microM) was more potent than alpha-tocopherol (40 microM) in inhibiting LDL oxidation. Thus, beta-carotene, like ascorbate and alpha-tocopherol, inhibits LDL oxidation and might have an important role in the prevention of atherosclerosis.  相似文献   

16.
Summary Serum-free tissue culture medium consisting of a 1∶1 mixture of Dulbecco's modified Eagle's medium (DMEM) and Ham's F12 medium is herein shown to support growth of Reuber H-35 cells over several days in culture. Cells were initially plated in serum containing DMEM medium for 3 h. After cell attachment, serum is removed and replaced with a serum-free 1∶1 mixture of these two commercially available tissue culture media. The doubling time of cell growth in this unsupplemented serum-free medium was 46 h in lightly plated cultures over the first 5 d. The presence of transferrin (5 μg/ml) and insulin (3.3 nM) results in a cell doubling time of 17 h, which equaled the growth rate in medium containing 10% fetal bovine serum. In the absence of transferrin, growth rates in serum-free medium were correlated with the cell density of cultures. Conditioned medium from dense, serum-free cultures has growth-stimulating activity in recipient lightly plated cultures. This simple, serum-free culture medium will facilitate studies on the growth regulation of H-35 rat hepatoma cells. This work was funded by a feasibility grant from the American Diabetes Association, as well as by the National Institutes of Health grants CA 24604-09 and CA 16463-14.  相似文献   

17.
A serum free medium was developed, that could be used for the large scale propagation of various cell lines in bioreactors. The medium is based on a 1:1 mixture of Iscove's Modified Dulbecco's Medium and Ham's Medium F12, supplemented with transferrin, insulin and a BSA/oleic acid complex. Several myelomas, hybridomas derived from different myelomas and spleen cells, and other lymphoid and non-lymphoid cell lines were cultivated at growth rates comparable to those observed using serum-supplemented media. There was furthermore no reduction in the formation of products such as monoclonal antibodies or recombinant human interleukin-2.Abbreviations Ag8 Mouse myeloma cell line P3-X63-Ag8.653 - BME Basal Medium Eagle - BSA Bovine Serum Albumin - DMEM Dulbecco's Modified Eagle's Medium - EDTA Ethylenediaminete-traacetic Acid - e-PC Phosphatidyl choline from egg yolk - FCS Fetal Calf Serum - FGF Fibroblast Growth Factor - GHL Glycyl-histidyl-lysine - HDL High Density Lipoprotein - HPL Human Plasma Lipid - IF 1:1 mixture of IMDM and Ham's F12 - IMDM Iscove's Modified Dulbecco's medium - LDL Low Density Lipoprotein - NS1 Mouse myeloma cell line NSI-1-Ag4-1 - PBS Phosphate Buffered Saline - s-PC Phosphatidylcholine from soy beans - s-PE Phosphatidylethanolamine from soy beans - s-lecithin lecithin from soy beans  相似文献   

18.
The potential role of nitric oxide radical (NO .) in macrophage-mediated oxidation and conversion of human low density lipoprotein (LDL) to a high-uptake form was examined by exposing LDL to aerobic solutions of either NO . or 3-morpholino-sydnonimine-hydrochloride (SIN-1, a compound that spontaneously forms NO . and superoxide anion radical) or to mouse peritoneal macrophages in the presence and absence of modulators of cellular NO . synthesis. Incubation with NO . alone caused oxidation of LDL's ubiquinol-10 and accumulation of small amounts of lipid hydroperoxides, but failed to form any high-uptake ligand for endocytosis by macrophages and did not alter the LDL particle charge or the integrity of apoB. Exposure of LDL to SIN-1 resulted in complete consumption of all antioxidants and substantial formation of lipid hydroperoxides, but again had little effect on the lipoprotein particle charge or generation of high-uptake form. Preincubation of macrophages with interferon-gamma increased the cells ability to generate reactive nitrogen metabolites. The extent of cell-mediated oxidation of LDL and the generation of high-uptake LDL was substantial in resident cells in which NO . synthesis was barely detectable, depressed in cells active in NO . synthesis and restored when NO . synthesis was suppressed by the arginine analogue, NMMA. These results suggest that, while together with superoxide anion radical, NO . can oxidize LDL, its synthesis is not required for macrophage-mediated oxidation of LDL in vitro; rather it exerts a protective role in preventing oxidative LDL modification by macrophages.  相似文献   

19.
In the present study, comparison of 2 different culture media (Ham's F-12 and M-199) for supporting in vitro maturation of goat oocytes, and their subsequent embryonic development was evaluated in the presence or absence of sera (estrous goat serum, EGS and fetal calf serum, FCS) and hormones (FSH, 0.5 ug/ml, LH, 5 ug/ml and estradiol, 1 ug/ml). Neither medium (Ham's F-12 or M-199) when supplemented with EGS and hormones showed any notable changes in the maturation rate nor in cleavage and blastocyst development. The mean cell number for blastocysts was also significantly low (P < 0.05). However, Ham's F-12 medium supplemented with FCS and hormones showed a considerable increase in the maturation rate, but subsequent embryonic development was not appreciably increased. However, maturation, cleavage and blastocyst development rates of oocytes matured in M-199 medium in combination with 10% FCS and hormones were significantly higher (P < 0.05). Mean cell number per blastocyst was also significantly increased in this latter treatment compared with that of the other groups (P < 0.05). The results thus indicated that both the culture medium and serum have a marked effect on maturation and subsequent embryonic development. Further, the results also showed that the combination of M-199 with FSH, LH and E2 supplemented with 10% FCS was the most efficacious medium for in vitro maturation and subsequent embryonic development of the media, sera and hormone combinations studied.  相似文献   

20.
The potential role of nitric oxide radical (NO ·) in macrophage-mediated oxidation and conversion of human low density lipoprotein (LDL) to a high-uptake form was examined by exposing LDL to aerobic solutions to either NO · or 3-morpholinosydnonimine-hydrochloride (SIN-1, a compound that spontaneously forms NO · and superoxide anion radical) or to mouse peritoneal macrophages in the presence and absence of modulators of cellular NO · synthesis. Incubation with NO · alone caused oxidation of LDL's ubiquinol-10 and accumulation of small amounts of lipid hydroperoxidases, but failed to form any high-uptake ligand for endocytosis by macrophages and did not alter the LDL particle charge or the integrity of apoB. Exposure of LDL to SIN-1 resulted in complete consumption of all antioxidants and substantial formation of lipid hydroperoxidases, but again had little effect on the lipoprotein particle charge or generation of high-uptake form. Preincubation of macrophages with interferon-γ increased the cells ability to generate reactive nitrogen metabolites. The extent of cell-mediated oxidation of LDL and the generation of high-uptake LDL was substantial in resident cells in which NO · synthesis was barely detectable, depressed in cells active in NO · synthesis and restored when NO · synthesis was suppressed by the arginine analogue, NMMA. These results suggest that, while longer with superoxide anion radical, NO · can oxidize LDL, its synthesis is not required for macrophage-mediated oxidation of LDL in vitro; rather it exerts a protective role in preventing oxidative LDL modification by macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号