首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we reported that myelin basic protein (MBP) peptide 1-37 contains an encephalitogenic epitope for PL/J mice, and MBP peptide 89-169 is encephalitogenic for SJL/J mice. (SJPL)F1 hybrid mice do not respond to immunization with these peptides in a co-dominant manner because the encephalitogenic response to peptide 1-37 dominates. To examine this phenomenon more closely, we tested the ability of MBP-primed parental or F1 T cells to respond to MBP or MBP peptides in the context of PL, SJL, or F1 antigen-presenting cells (APC). It was found that the F1 T cells responded to either the protein or the peptides when these were presented in the context of F1 or PL APC. However, F1 T cells would not respond to MBP in the context of SJL APC, although the latter cells were functionally intact. This effect was not antigen-specific because SJL APC would not present ovalbumin or PPD to primed F1 T cells. F1 T cells from mice immune to the strongly antigenic bacterium Listeria monocytogenes responded to bacterial antigens presented by SJL APC, although at a significantly lower level compared to the results obtained when these antigens were presented by F1 or PL APC. This finding implied that unbalanced antigen presentation was a quantitative rather than a qualitative phenomenon. When F1 hybrid mice from other strain combinations were tested, a similar effect was observed whenever one of the parental strains was PL/J. This effect was mapped to the MHC in MHC-congenic B10 mice.  相似文献   

2.
Recent experiments have shown that different regions of myelin basic protein (MBP) are encephalitogenic for different inbred strains of mice. It was therefore of interest to determine whether the immune response to MBP was MHC associated, and if so, what subregion controlled this response. Because PL/J and A/J mice were good responders to mouse MBP and C57Bl/10SN were not, B10.PL(73NS) and B10.A mice were immunized with mouse MBP under conditions designed to induce EAE. These strains were found to be highly susceptible. Intra-H-2 recombinant mice were then assessed for susceptibility. B10.A(4R) and B10.MBR were susceptible, whereas B10.A(5R) were resistant. Thus, EAE induced by purified MBP is under the control of the MHC, and the response maps to the I-A subregion. Production of IL 2 in vitro by T cells from MBP-primed mice in the presence of antigen and adherent cells was blocked by monoclonal antibody to the I-A, but not the I-E, subregion. When the specificity of the encephalitogenic response was tested, peptide 1-37 was active in B10.PL(73NS) and B10.A mice, whereas peptide 89-169 was active in A.SW, SWR, and B10.T(6R) strains. Serum from mice immunized with MBP peptides was assayed for antibody content. PL, B10.PL, and B10.A mice made a good antibody response to peptides 1-37 and 43-88 but were nonresponsive to peptide 89-169. SJL, A.SW, SWR, and B10.T(6R) mice responded well to peptide 89-169 but were poorly responsive to peptides 1-37 and 43-88.  相似文献   

3.
Guinea pig basic protein (GPBP)-immune lymph node cells (LNC) from SJL, PL, and SJL x PL (F1) mice proliferated to whole GPBP and GPBP fragments 1-37, 43-88, and 89-169. All three strains of mice developed experimental allergic encephalomyelitis (EAE) by active immunization with whole GPBP or by passive transfer of LNC cultured with whole GPBP. SJL (H-2s) and PL (H-2u) mice developed EAE by active immunization with fragments 89-169 or 1-37, respectively, or by passive transfer of LNC cultured with the same Ag. F1 mice developed EAE by active immunization only with fragment 1-37 or by passive transfer of LNC cultured with either of the above fragments. Removal of macrophages (MO) from immune-F1 LNC resulted in the loss of a proliferative response and the ability to transfer EAE. Reconstitution of MO-depleted immune F1 T cells with either F1-, SJL-, or PL-MO restored the proliferative responses to whole GPBP and the three fragments. Cultures of immune F1 T cells reconstituted with any of the three MO populations and incubated with whole GPBP passively transferred EAE into naive F1 mice. Immune F1 T cells cultured with F1 MO in the presence of either fragment 1-37 or 89-169 transferred EAE. F1 T cells cultured with SJL MO were able to transfer EAE only if the Ag was fragment 89-169, whereas F1 T cells cultured with PL MO were able to transfer disease only if incubated in the presence of fragment 1-37. F1 mice are passively susceptible to EAE induced by adoptive transfer of cells reactive to either the N-terminal or C-terminal fragment and that the encephalitogenic determinant of GPBP is related to the genome of MO present in vitro.  相似文献   

4.
The role of class II restriction in T cell recognition of an epitope of the autoantigen myelin basic protein (MBP) has been investigated. Encephalitogenic PL/J(H-2u) and (PL/J X SJL/J(H-2s))F1 ((PLSJ)F1) clones, isolated after immunization with intact MBP, recognize the N-terminal 11 amino acid residues of MBP in association with I-Au class II molecules. The synthetic peptide MBP 1-11 has been tested in vivo for induction of EAE. Clinical and histological EAE occurs in PL/J and (PLSJ)F1 mice but not SJL/J. The class II restriction of T cells primed with MBP 1-11 has been examined in primary cultures in vitro. Similar to encephalitogenic T cell clones, isolated after continuous selection in vitro, the population of MBP 1-11-specific proliferative PL/J and (PLSJ)F1 T cells, recognize this epitope in association with I-Au class II molecules. Not all MBP-specific T cell clones which are restricted to I-Au class II molecules cause autoimmune encephalomyelitis. The specificity of these non-encephalitogenic clones has been examined in this report. These clones also recognize MBP 1-11. Thus recognition of an encephalitogenic T cell epitope is not sufficient for induction of EAE.  相似文献   

5.
Synthetic peptides of proteolipid protein (PLP) were screened for their ability to induce experimental autoimmune encephalomyelitis (EAE) in SJL/J, PL/J, and (SJL x PL)F1 mice, and T cell lines were selected by stimulation of lymph node cells with PLP peptides. PLP 141-151 was found to be less encephalitogenic in SJL/J mice than PLP 139-151, due to deletion of two amino acids from the amino-terminal end. PLP 139-151 immunization induced relapsing EAE in SJL/J and F1 mice but not PL/J mice. In contrast, PLP 43-64 induced relapsing EAE in PL/J and F1 mice but not SJL/J mice. F1 T cell lines specific for either PLP 43-64 or PLP 139-151 adoptively transferred demyelinating EAE to naive F1 recipients. Haplotypes H-2s and H-2u appear to be immunologically co-dominant in F1 mice in the PLP EAE system, which differs from the H-2u dominance in F1 mice in the myelin basic protein EAE system. The identification of a PLP peptide that is encephalitogenic in PL/J mice, in addition to the previous demonstration of PLP peptides that are encephalitogenic for SWR mice (PLP 103-116) and SJL/J mice (PLP 139-151), lends support to a role for PLP as a target Ag in autoimmune demyelinating diseases.  相似文献   

6.
PLP is the major protein constituent of central nervous system myelin. We have previously shown that SJL/J (H-2s) mice develop an acute form of EAE after immunization with PLP. The purpose of the present study was to identify an encephalitogenic determinant of PLP for SJL mice. We immunized SJL/J mice with a synthetic peptide identical to residues 130-147 QAHSLERVCHCLGKWLGH of murine PLP, a sequence having an amphipathic alpha-helical conformation. Although it did not induce disease, an overlapping peptide containing residues 139-154 HCLGKWLGHPDKFVGI was encephalitogenic. Immunization with this peptide induced severe clinical and histologic EAE in 3 of 20 mice. T cell enriched ILN cells from these mice responded specifically (3H-thymidine incorporation) to this peptide as well as to shorter analogues of this domain containing serine in place of cysteine at residues 138 and 140. Immunization with the serine-substituted PLP peptides 137-151 VSHSLGKWLGHPDKF and 139-151 HSLGKWLGHPDKF induced severe, acute EAE in 4 of 9 and 15 of 15 SJL mice, respectively, and their T cell enriched ILN cells responded not only to the analogues, but also to the native PLP sequence 139-154. These results indicate that residues 139-151 of murine PLP is an encephalitogenic determinant for SJL mice. Furthermore, like the PLP encephalitogenic domain for SWR (H-2q) mice, this determinant is also a T cell epitope with a coding sequence at the end of an exon.  相似文献   

7.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory neurologic disease initiated by myelin basic protein-reactive CD4+ T cells, which are restricted by a particular MHC class II molecule. Recent studies have utilized inhibitor peptides that bind to restricting MHC class II molecules in order to inhibit EAE, presumably by means of competing with encephalitogenic epitopes. However, these studies leave open the possibility of alternative explanations, such as Ag-specific nonresponsiveness and immunodominance. In order to demonstrate that competition for MHC binding alone can inhibit EAE, the inhibitor peptide should ideally be structurally unrelated and nonimmunogenic yet physically associate with the MHC class II molecule. In this study, we show that the OVA-323-339 peptide, which is unrelated to the disease-inducing peptide, binds to A alpha uA beta u. However, although OVA-323-339 is extremely immunogenic in A alpha dA beta d-expressing BALB/c mice, it is nonimmunogenic in (PL/J x SJL)F1 and PL/J mice expressing A alpha uA beta u. When administered as a coimmunogen with Ac1-11, OVA-323-339 inhibited induction of EAE in (PL/J x SJL)F1 mice. Myelin basic protein-89-101, which does not bind A alpha uA beta u, had no effect on the disease process. This study provides evidence that MHC class II binding alone can modulate the induction of EAE. The use of a nonimmunogenic non-self peptide to modulate an autoimmune disease minimizes the potential complications of immunodominance or alternative regulatory mechanisms associated with immunogenic peptide therapies and further confirms the MHC-blocking model of immunosuppression.  相似文献   

8.
Our previous studies demonstrated that oligomeric recombinant TCR ligands (RTL) can treat clinical signs of experimental autoimmune encephalomyelitis (EAE) and induce long-term T cell tolerance against encephalitogenic peptides. In the current study, we produced a monomeric I-A(s)/PLP 139-151 peptide construct (RTL401) suitable for use in SJL/J mice that develop relapsing disease after injection of PLP 139-151 peptide in CFA. RTL401 given i.v. or s.c. but not empty RTL400 or free PLP 139-151 peptide prevented relapses and significantly reduced clinical severity of EAE induced by PLP 139-151 peptide in SJL/J or (C57BL/6 x SJL)F(1) mice, but did not inhibit EAE induced by PLP 178-191 or MBP 84-104 peptides in SJL/J mice, or MOG 35-55 peptide in (C57BL/6 x SJL/J)F(1) mice. RTL treatment of EAE caused stable or enhanced T cell proliferation and secretion of IL-10 in the periphery, but reduced secretion of inflammatory cytokines and chemokines. In CNS, there was a modest reduction of inflammatory cells, reduced expression of very late activation Ag-4, lymphocyte function-associated Ag-1, and inflammatory cytokines, chemokines, and chemokine receptors, but enhanced expression of Th2-related factors, IL-10, TGF-beta3, and CCR3. These results suggest that monomeric RTL therapy induces a cytokine switch that curbs the encephalitogenic potential of PLP 139-151-specific T cells without fully preventing their entry into CNS, wherein they reduce the severity of inflammation. This mechanism differs from that observed using oligomeric RTL therapy in other EAE models. These results strongly support the clinical application of this novel class of peptide/MHC class II constructs in patients with multiple sclerosis who have focused T cell responses to known encephalitogenic myelin peptides.  相似文献   

9.
The role of T-T cell interactions in the clinical course of acute experimental allergic encephalomyelitis (EAE) in mice was investigated. Myelin basic protein (MBP)-reactive and encephalitogenic T cell clones were established from long-term lines derived from susceptible strain SJL/J mice and resistant strain DDD/1 mice. The lines and clones from DDD/1 mice were obtained by immunization of congenitally athymic mice of DDD/1 origin, which had been reconstituted with syngeneic Lyt-2+-depleted splenic T cells. The clones derived from both strains bore surface phenotypes of Lyt-1+, 2- and L3T4+, and proliferated well in response to rat, rabbit, bovine, and guinea pig MBP in the presence of antigen-presenting cells with I-As. Passive EAE could be induced in syngeneic normal recipients by these clones as well as by the lines from which the clones were derived. The clinical features of the clone-induced EAE were essentially the same as those of the line-induced EAE. Furthermore, DDD/1 athymic recipients developed signs of acute EAE by the adoptive transfer of I-A-compatible syngeneic and allogeneic T cell clones, in which there was no significant difference in time of onset, maximum severity, or prognosis. These results indicate that the entire clinical course of acute EAE can be elicited by a single population of MBP-reactive T cells in the absence of the thymus and other populations of primed or unprimed T cells.  相似文献   

10.
To determine if the Ag that induces an autoimmune disease influences parental MHC haplotype molecule expression in situ in MHC heterozygotes, acute experimental allergic encephalomyelitis (EAE) was induced with different encephalitogenic peptides in (SJL/J x SWR)F1 mice. The mice were sensitized with either a synthetic peptide corresponding to mouse myelin proteolipid protein (PLP) residues 103-116 YKTTICGKGLSATV which induces EAE in SWR (H-2q), but not SJL/J (H-2s) mice or a synthetic peptide corresponding to PLP residues 139-151 HCLGKWLGHPDKF which is encephalitogenic in SJL/J but not SWR mice. Mice were killed when they were moribund or at 30 days after sensitization. Twelve of 18 F1 mice given PLP peptide 103-116 and 12 of 17 mice given PLP peptide 139-151 developed EAE within 2 to 3 wk after sensitization. Cryostat sections of brain samples from F1 and parental mice were immunostained with a panel of mAb identifying H-2s and H-2q class I and II MHC molecules. In brains of controls, class I MHC molecules were expressed on choroid plexus, endothelial cells, and microglia whereas class II MHC molecules were absent. In EAE lesions, class I and II MHC molecules were present on inflammatory and parenchymal cells, but the degree of parental haplotype molecule expression did not vary with the different peptide Ag tested. Thus, in (SJL/J x SWR)F1 mice, myelin PLP peptides 103-116 and 139-151 are co-dominant Ag with respect to clinical and histologic disease and parental haplotype MHC molecule expression. We propose a unifying hypothesis consistent with these results and previous observations of differential Ia expression in (responder x non-responder)F1 guinea pigs. We suggest that MHC molecules may bind locally derived peptide Ag in inflammatory sites and that these interactions influence levels of MHC haplotype molecules on APC.  相似文献   

11.
Experimental allergic encephalomyelitis (EAE), an experimental autoimmune disease of the central nervous system (CNS), is readily induced in many mammalian species by immunization with CNS tissue or myelin basic protein (MBP) purified from the CNS. EAE has been frequently used as a model for multiple sclerosis (MS). However, EAE generally presents as an acute monophasic disease in the adult animal after immunization with MBP. After recovery, the animal is resistant to rechallenge with encephalitogen (1). Two exceptions to these observations have been reported. McFarlin et al. (2) reported that a variable number of Lewis rats showed signs of a single, mild relapse about a week after recovery from MBP-induced acute EAE. Panitch and Ciccone (3) have reported induction of recurrent EAE in rats immunized with human MBP. Chronic, relapsing EAE has been induced in the mouse; however, an apparent requirement for CNS tissue had been noted (4, 5). Recently, during the course of a series of experiments on the induction of EAE in SJL/J, PL/J, and (SJL/J X PL/J)F1 (SPL F1) mice, it was observed that the F1 mice frequently had paralytic relapses after recovery from MBP-induced symptoms. Experiments were initiated to examine this phenomenon, and the findings are presented below.  相似文献   

12.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system mediated by T cells bearing TCR of restricted heterogeneity. Thus, in the murine PL strain, V beta-8.2 is used by 80% of the encephalitogenic T cells. This observation has led to the successful prevention and reversal of EAE by the in vivo use of mAb directed to these restricted gene products. In SJL mice, the V beta-17a gene product has been shown to be used by approximately 50% of encephalitogenic T cells subsequent to immunization with a myelin basic protein (MBP)-derived peptide. However, the other V beta genes used by encephalitogenic T cells in SJL EAE have remained uncharacterized. We now report, for the first time, the beta-chain-encoding DNA sequence of two encephalitogenic, MBP-reactive, SJL-derived T cell clones. These clones which are specific for H-2s and the carboxyl-terminus (amino acid 92-103) of MBP, use TCR encoded by V beta-4. In addition, we demonstrate that the transfer of EAE by a heterogenous SJL-derived encephalitogenic T cell line can be prevented using an anti-V beta-4 antibody in vivo. V beta-4 usage has been previously described in a H-2u/MBP amino-terminus-reactive encephalitogenic T cell. The present findings may thus further support the "V region-disease" hypothesis.  相似文献   

13.
J L Urban  S J Horvath  L Hood 《Cell》1989,59(2):257-271
Experimental autoimmune encephalomyelitis (EAE) results from T helper (TH) cell recognition of myelin basic protein (MBP). We have characterized TH cell reactivity in B10.PL and PL/J (H-2u) mice to 39 N-terminal MBP peptide derivatives of different lengths and with individual amino acid substitutions. The peptide determinant of murine MBP can be divided into a minimal stimulatory core region (residues 1-6) and a tail region (residues 7-20) that alters the structure of the core region to affect both T cell recognition and MHC binding. Core recognition by B10.PL and PL/J mice is highly similar but in one case strain dependent. Peptide analogs that do not stimulate MBP-specific TH cells but bind to the I-Au molecule competitively inhibit T cell reactivity to MBP in vitro and prevent the induction of EAE in vivo.  相似文献   

14.
A panel of myelin basic protein (MBP)-specific, class II major histocompatibility complex (As)-restricted T-cell clones were established from SJL/J mice. Three clonotypes, based on their responses to guinea pig MBP and its peptide fragments, were observed. Clonotype I cells, represented by clones HS.6, HS.D2, HS.8, HS.E10, and HS.C1, were reactive to the encephalitogenic C-terminal fragment of MBP, amino acid residues 89–169. Clonotype II, represented by clone HS.E3, was reactive to fragments containing residues 43–88, and clones HS.D12 and HS.C7, representing clonotype III cells, responded to the whole molecule only. Three clones from clonotype I were capable of transferring both clinical and histological signs of experimental allergic encephalomyelitis (EAE) into naive mice. Southern blot analysis of T-cell receptor -chain genes using J 1- and J 2-specific probes showed that the rearrangement pattern was unique in each of the clones. These results suggest that the development of EAE may represent an autoaggressive polyclonal T-cell response.  相似文献   

15.
Strain differences in susceptibility to experimental allergic encephalomyelitis (EAE) in guinea pigs were correlated with the cellular immune response to the basic encephalitogenic protein (BE). The response to BE was determined in strains 2 and 13 guinea pigs in vivo by the delayed hypersensitivity skin test and in vitro by the lymphocyte transformation technique. The response to the intact BE of both heterologous (bovine) and homologous (guinea pig) origins was indistinguishable between the two strains. Guinea pigs sensitized with the guinea pig BE showed complete cross-reaction when tested with the bovine BE. On the other hand, there appears to be significant differences in the response to specific determinants on the molecule. Thus, only strain 13 and F1 hybrids which are susceptible to EAE responded to the encephalitogenic nonapeptide (residue 114–122 of the BE molecule), whereas strain 2 guinea pigs which are resistant to EAE did not respond to this determinant.  相似文献   

16.
Immunization with myelin basic protein (BP) causes experimental allergic encephalomyelitis (EAE) in certain strains of mice. SJL/J (H-2s) is the prototype sensitive strain. Although BALB/c (H-2d) is resistant to EAE through use of an identical immunization protocol, (BALB/c x SJL/J)F1 hybrid mice develop EAE after immunization with BP. T cell clones specific for BP have been isolated from a highly encephalitogenic line of (BALB/c x SJL/J)F1 hybrid T cells raised against bovine BP. The clones were examined for their H-2 restriction and specificity for heterologous forms of BP (mouse, rat, and bovine BP). The results revealed the clones cross-reacting with mouse (self) BP were almost always restricted to F1 hybrid class II major histocompatibility complex (MHC) elements. In contrast, mouse cross-reactive clones derived from a nonencephalitogenic (BALB/c x SJL/J) T cell line raised against rat BP were largely restricted to H-2d elements. These clones did not cross-react with bovine BP. Four additional lines were generated by carrying the original rat and bovine F1 T cell lines on parental antigen-presenting cells thus generating lines biased toward homozygous (SJL/J, H-2s, or BALB/c, H-2d) restriction elements. These "parentally restricted" T cell lines did not induce EAE when injected in vivo. These results suggest that in this F1 strain sensitivity to T cell-induced EAE is associated with epitopes on murine BP that associate with F1 class II MHC restricting elements. In contrast, nonencephalitogenic T cell lines contain a high proportion of murine cross-reactive clones restricted to H-2d, the haplotype of the classically resistant BALB/c mouse. This work illustrates the use of T cell lines and clones in a model system to further analyze the role of MHC restriction elements in autoimmune disease occurring in heterozygous individuals.  相似文献   

17.
Myelin proteolipid protein (PLP) contains 2 immunodominant encephalitogenic epitopes in SJL mice, namely PLP residues 139–151 and 178–191. DM20, a minor isoform of PLP, lacks residues 116–150 and consequently contains only the single major encephalitogenic epitope 178–191. However, it has been found previously that bovine DM20 is not encephalitogenic in SJL mice. Since residue 188 within peptide 178–191 is phenylalanine (F) in murine DM20 and alanine (A) in bovine DM20, we tested the effect of this difference on the immune responses and induction of EAE. SJL mice were immunized with either highly purified murine or bovine DM20. Residues 178–191 were found to be immunodominant for each, but only murine and not bovine DM20 was encephalitogenic. A synthetic peptide corresponding to the murine 178–191 sequence (F188) was also encephalitogenic, whereas the peptide corresponding to the bovine sequence (A 188) was not. Both F188 and A188 bind with high affinity to I-As and both are recognized by the SJL T cell repertoire. A188-specific T cell lines reacted to both A188 and F188, but F188-specific T cell lines were not stimulated by A188. F188-specific T cell lines produced mRNA for the Thl cytokines IL2 and IFN, and, in passive transfer experiments, were encephalitogenic upon stimulation with F188, but not A188. In contrast, A188-specific T cell lines produced mRNA for IL4, IL5 and IL10, in addition to IL2 and IFN, and were not encephalitogenic after stimulation with either F188 or A188. Cotransfer of A188-specific T cell lines with F188-specific T cell lines resulted in protection from EAE. Thus, A188 induces a functionally different phenotype of T cells from that induced by F188. Taken together these data suggest that the failure of bovine DM20 to induce EAE may be attributable to induction of protective rather than pathogenic T cells by the immunodominant epitope.  相似文献   

18.
Myelin basic protein (BP)-specific T-cell lines were selected from SJL/J mice using techniques to select similar lines from Lewis rats. SJL/J BP-specific T-cell lines were composed of T cells with the helper/inducer phenotype (Lyt 1.2+, 2.2- and L3T4+) and proliferated in response to both the 1-37 and the 89-169 fragments of guinea pig BP. BP-specific T-cell lines transferred delayed-type hypersensitivity (DTH) responses to BP that persisted for over 60 days. Most recipient animals (32/41) developed acute experimental autoimmune encephalomyelitis (EAE), and most survivors (19/24) developed chronic relapsing EAE. Spinal cords of animals during both the acute and the chronic phases of illness contained plaques of demyelination and infiltrates of lymphocytes and macrophages. These findings differed from those of Lewis rat BP-specific lines which respond to a different region of BP, transfer DTH responses that last less than 12 days, and induce acute EAE in which demyelination does not occur.  相似文献   

19.
Specificity of T lymphocyte lines for peptides of myelin basic protein   总被引:8,自引:0,他引:8  
T lymphocyte lines specific for myelin basic protein (BP) can mediate experimental autoimmune encephalomyelitis (EAE), or can protect against the active induction of the disease. To investigate the antigenic fine specificity of guinea pig (GP) BP-specific T cell lines raised from different rat strains, and to determine whether functionally different T lymphocyte lines and clones recognized the same or different regions of the BP molecule, the proliferation responses of line cells were assessed after stimulation with purified peptides of GP-BP. Lewis rat T cell lines and clones selected for responses to whole GP-BP responded selectively to the 68-88 amino acid sequence of GP-BP, but not to the 1-37, 43-67, or 89-169 sequences. The region of GP-BP recognized by Lewis T cells was additionally defined to include the 75-80 amino acid sequence, because a T cell clone responded equally to GP and rat BP which differed by only one amino acid at position 79, but did not respond to human or bovine BP, which had a Gly-His insertion in this region. T lymphocyte lines derived from the F344 and PVG (Weizmann) rat strains shared the same selective response to peptide 68-88, but lines from BN rats responded to an epitope(s) outside of the 68-88 sequence. The functional capacity of the various T cell lines to mediate experimental autoimmune encephalomyelitis (EAE) or to induce resistance against EAE was independent of their specificity for the different GP-BP peptides; lines specific for epitope(s) within or excluded from the 68-88 sequence could be encephalitogenic depending on their strain of origin, and various lines specific for the 68-88 peptide could induce both disease and protection, disease only, or neither activity.  相似文献   

20.
Proteolipid protein (PLP) is the major protein of central nervous system myelin. SJL (H-2s) mice immunized with a synthetic peptide corresponding to PLP residues 139-151 develop acute EAE. In this study, 6 IAs-restricted, CD4+, TCR alpha beta-bearing T cell clones were derived from SJL/J mice after immunization with this synthetic peptide. The clones responded in in vitro proliferative assays to the whole PLP molecule and to PLP peptide 139-151, but not to irrelevant Ag. They also responded to truncated and overlapping forms of the peptide but five distinct reactivity patterns were observed using these peptides. A panel of anti-TCR V beta mAb and TCR V beta-specific cDNA probes were used to determine the TCR V beta usage of the clones. Five clones were found to use four different V beta (V beta 2, V beta 6, V beta 10, or V beta 17a), whereas the V beta on the sixth clone could not be identified. Five of the clones induced EAE of varying severity upon adoptive transfer into naive syngeneic mice or mice pretreated with irradiation and pertussis and one clone was nonencephalitogenic. The Ag-specific proliferative response of all but the nonencephalitogenic clone could be blocked by an anti-CD4 mAb. Thus, the clones showed differences in their fine specifity, TCR V beta usage, sensitivity to antibody blocking, and encephalitogenic potency. These data demonstrate that the T cell response to the encephalitogenic PLP peptide 139-151 is heterogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号