首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmembrane electrical potential of root cells of Zea mays L. cv. W64A in a modified 1× Higinbotham solution was partially depolarized by semipurified toxin obtained from Bipolaris (Helminthosporium) maydis race T. At a given toxin concentration depolarization of Texas cytoplasm cells was much greater than for normal cytoplasm cells. This observation correlated directly to the differential host susceptibility to the fungus. The time course and magnitude of depolarization were dependent on toxin concentration; at high concentration the electropotential difference change was rapid. Cortex cells depolarized more slowly than epidermal cells indicating that the toxin slowly permeated intercellular regions. Toxin concentrations which affected electropotential difference were of the same magnitude as those required to inhibit root growth, ion uptake, and mitochondrial processes.

Azide, cyanide, and cold temperature (5 C) gave the same partial depolarization as did the toxin. Dodecyl succinic acid caused complete depolarization. These and other data indicate that one of the primary actions of the toxin is to inhibit electrogenic ion pumps in the plasmalemma.

  相似文献   

2.
Electropotential in excised pea epicotyls   总被引:12,自引:11,他引:1       下载免费PDF全文
In contrast to intact etiolated pea seedling tissue (Pisum sativum L.), excised segments immersed in a complete nutrient solution show marked increases in ion content, largely of K+ and NO3, over a 72-hour period. During this time there is increase in cell electropotential difference, PD. During the initial 6 to 8 hours there is a lag in ion uptake; cell PD, however, increases rapidly from approximately −50 to −100 mv then increases more slowly. The increase in PD precedes and thus may be a prerequisite for the rapid ion accumulation phase. Cell PD increases in either water or nutrient solution but eventually reaches higher levels in the latter. Following water pretreatment of sufficient duration K+ accumulation shows no lag period. The lag phase noted here appears dissimilar to that of storage tissues.  相似文献   

3.
Summary In storage tissue ofBeta vulgaris L., carbonyl cyanidem-chlorophenylhydrazone or cyanide+salicylhydroxamic acid reduce cell electropotentials from about –200 to below –100 mV. The relationship between potential and cellular ATP level is examined during treatment with different concentrations of inhibitiors. At low ATP levels the potential rises sharply with increases in ATP, but above an ATP level of approximately 50% of the uninhibited level the potential changes very little with ATP concentration. A plot of membrane potentialvs.86Pb+ influx or of potentialvs. net K+ uptake indicates that as the level of inhibition is decreased, the potential tends to reach a limit while cation influx and net uptake continue to increase. Resistance measurements, although subject to difficulties of interpretation, indicate no change in conductance with potential, ion flux, or ATP level. Thus the membrane potential should directly reflect electrogenic pump activity, attributed to active uncoupled H+ efflux. K+ uptake can occur against its electrochemical gradient and is attributed to a coupled K+ influx/H+ efflux pump. The results show that the electrogenic pump activity is independent of the K+/H+ exchange rate. Thus electrogenic H+ efflux and K+/H+ exchange may represent different transport systems, or different modes of operation of a single pump with variable stoichiometry.  相似文献   

4.
The Membrane Potential of Acetabularia mediterranea   总被引:8,自引:1,他引:7  
The cytoplasm of an Acetabularia cell is normally at a potential of about -170 mv relative to the external solution; the vacuole is also at this potential. Although there is strict flux equilibrium for all ions, the potential is more negative than the Nernst potentials of any of the permeating ions. Darkness, CCCP, low temperature, and reducing [Cl-]o by a factor of 25 all rapidly depolarize the membrane and inhibit Cl- influx. Some of these treatments do not inhibit the effluxes of K+ and Na+. Increasing [K+]o also depolarizes the membrane both under normal conditions and at low temperature; in the latter case the membrane is partially depolarized in normal seawater (low [K+]o) and in high [K+]o positive potentials of up to +15 mv are attained. It is concluded that the membrane potential is controlled by the electrogenic influx of Cl-, and also, at least in some circumstances, by the diffusion of K+. In addition, it is suggested that electrogenic efflux of H+ may be important in transient nonequilibrium situations. An Appendix deals with the interpretation of simple nonsteady-state tracer kinetic data.  相似文献   

5.
Oat coleoptile sections (Avena sativa L. cv. "Garry") were osmotically shocked with 0.5 m mannitol followed by 1 mm Na-phosphate (pH 6.4) at 4 C. This treatment reduced uptake of alpha-aminoisobutyric acid, 3-o-methyl glucose, and leucine by 75 to 90% but inhibited (36)Cl(-) uptake only 30%. Some recovery was observed 1 to 3 hours later. Respiration rates were unaffected by osmotic shock and protein synthesis was reduced 11%.Osmotic shock also stimulated efflux of alpha-aminoisobutyric acid and K(+) and led to an increase in conductivity of the solution bathing shocked sections. The transmembrane electropotential of 75% of the shocked cells fell to -20 mv to -45 mv compared with the majority of unshocked cells at -80 mv to -120 mv.We concluded that osmotic shock selectively modifies the plasma membrane. The inhibitions of uptake could be due to removal of specific components of the plasma membrane and/or to the lowered electropotential.  相似文献   

6.
The rapid reduction in cell electropotentials induced by metabolic inhibitors is strong evidence for an electrogenic ion pump. According to Ohm's law, such a depolarization might be explained by a reduction in electric current, I, with unidirectional transport of a given ion, or an increase in permeability (decrease in resistance). With cells of etiolated seedlings of Pisum sativum L. cv. Alaska and Zea mays cv. Golden Bantam, carbon monoxide inhibition, which occurs only in the dark and is readily reversed by light, allows repeated cycling of depolarization and repolarization; there is no effect on cell membrane resistance. In contrast, cyanide inhibition results in a marked increase in membrane electrical resistance; with cyanide following repeated pulses of current used in measuring cell membrane resistance, the resistance eventually (about 10 minutes) shows an abrupt drop as in the “punch-through” effect reported by H. G. L. Coster (1965. Biophys. J. 5: 669-686).  相似文献   

7.
Summary Cyanide (CN) and dinitrophenol (DNP) rapidly depolarize the cells of oat coleoptiles (Avena sativa L., cultivar Victory) and of pea epicotyls (Pisum sativum L., cultivar Alaska); the effect is reversible. This indicates that electrogenesis is metabolic in origin, and, since active transport is blocked in the presence of CN and DNP, perhaps caused by interference with ATP synthesis, that development of cell potential may be associated with active ion transport. Additional evidence for an electrogenic pump is as follows. (1) Cell electropotentials are higher than can be accounted for by ionic diffusion. (2) Inhibition of potential, respiration, andactive ion transport is nearly maximal, but a potential of –40 to –80 mV remains. This is probably a passive diffusion potential since, under these conditions, a fairly close fit to the Goldman constant-field equation is found in oat coleoptile cells.  相似文献   

8.
In this study, potential mechanisms underlying resistance and adaptation to benzalkonium chloride (BC) in Listeria monocytogenes were investigated. Two groups of strains were studied. The first group consisted of strains naturally sensitive to BC which could be adapted to BC. The second group consisted of naturally resistant strains. For all adapted isolates, there was a correlation between the resistance to BC and ethidium bromide, but this was not the case for the naturally resistant isolates. To investigate the role of efflux pumps in adaptation or resistance, reserpine, an efflux pump inhibitor, was added to the strains. Addition of reserpine to the sensitive and adapted strains resulted in a decrease in the MIC for BC, whereas no such decrease was observed for the resistant strains, indicating that efflux pumps played no role in the innate resistance of certain strains of L. monocytogenes to this compound. Two efflux pumps (MdrL and Lde) have been described in L. monocytogenes. Studies showed low and intermediate levels of expression of the genes encoding the efflux pumps for two selected resistant strains, H7764 and H7962, respectively. Adaptation to BC of sensitive isolates of L. monocytogenes resulted in significant increases in expression of mdrl (P < 0.05), but no such increase was observed for lde for two adapted strains of L. monocytogenes, LJH 381 (P = 0.91) and C719 (P = 0.11). This indicates that the efflux pump Mdrl is at least partly responsible for the adaptation to BC.  相似文献   

9.
10.
《Plant science》1987,49(1):9-13
Unilamellar liposomes containing 1 mM K+-phosphate were prepared from soybean (Glycine max Merr.) lipids. The non-host-specific tentoxin induced an immediate and strong efflux of K+ and a contaminant shrinkage of the vesicles. In comparison, Helminthosporium maydis toxin and Helminthosporium victoriae toxin, which are specific for certain plant genotypes (host-selective toxins) had a much smaller effect on the K+ efflux, which was comparable to that exerted by the specific K+ ionophore valinomycin.  相似文献   

11.
Effect of cyanide on the plasmalemma potential of mnium   总被引:2,自引:1,他引:1       下载免费PDF全文
By centrifuging Mnium cuspidatum leaf cells, the cytoplasm can be distinguished from the vacuole and a microelectrode tip can be located unambiguously in the cytoplasm. The site of the electrogenic pump is clearly demonstrated to reside in the plasmalemma as shown by depolarization of the cell electropotential induced by CN.  相似文献   

12.
The effects on the Schwann cell electrical potential of external ionic concentrations and of K-strophanthoside were investigated. Increasing (K)o depolarized the cell. The potential is related to the logarithm of (K)o in a quasi-linear fashion. The linear portion of the curve has a slope of 45 mv/ten-fold change in (K)o. Diminutions of (Na)o and (Cl)o produced only small variations in the potential. Calcium and magnesium can be replaced by 44 mM calcium without altering the potential. Increase of (Ca)o to 88 mM produced about 10 mv hyperpolarization. The cell was hyperpolarized by 11 mv and 4 mv within 1 min after applying K-strophanthoside at concentrations of 10-3 and 10-5 M, respectively. No variations of cellular potassium, sodium, or chloride were observed 3 min after applying the glycoside. The hyperpolarization caused by 10-3 M K-strophanthoside was not observed when (K)o was diminished to 1 or 0.1 mM or was increased to 30 mM. At a (K)o of 30 mM, 10-2 M strophanthoside was required to produce the hyperpolarizing effect. In high calcium, the cell was further hyperpolarized by the glycoside. The initial hyperpolarization caused by the glycoside was followed by a gradual depolarization and a decrease of the cellular potassium concentration. The results indicate that the Schwann cell potential of about -40 mv is due to ionic diffusion, mainly of potassium, and to a cardiac glycoside-sensitive ion transport process.  相似文献   

13.
The variability of toxigenic phytoplankton and the consequent uptake and loss of toxins by the mussel Choromytilus meridionalis was investigated in the southern Benguela at the event scale (3–10 days) in response to the upwelling–downwelling cycle. Phytoplankton and mussel samples were collected daily (20 March–11 April 2007) from a mooring station (32.04°S; 18.26°E) located 3.5 km offshore of Lambert's Bay, within the St Helena Bay region. Rapid changes in phytoplankton assemblages incorporated three groups of toxigenic phytoplankton: (1) the dinoflagellate Alexandrium catenella; (2) several species of Dinophysis, including Dinophysis acuminata, Dinophysis fortii, Dinophysis hastata and Dinophysis rotundata; and (3) members of the diatom genus Pseudo-nitzschia. Analysis of phytoplankton concentrates by LC–MS/MS or LC-FD provided information on the toxin composition and calculated toxicity of each group. Several additional in vitro assays were used for the analysis of toxins in mussels (ELISA, RBA, MBA for PSP toxins; and ELISA for DSP toxins). Good correspondence was observed between methods except for the MBA, which provided significantly lower (approximately 2-fold) estimates of PSP toxins. PSP and DSP toxins both exceeded the regulatory limits in Choromytilis meridionalis, but ASP toxins were undetected. Differences were observed in the composition of both PSP and DSP toxins in C. meridionalis from that of the ingested dinoflagellates (PSP toxins showed an increase in STX, C1,2, and traces of dcSTX and GTX1,4 and a decrease in NEO; DSP toxins showed an increased in DTX1, and traces of PTX2sa, and a decrease in OA). The rate of loss of PSP toxins following dispersal of the A. catenella boom was 0.12 d−1. Variation in the loss rates of different PSP toxins contributed to the change in toxin profile in C. meridionalis. Prediction of net toxicity in shellfish of the nearshore environment in the southern Benguela is limited due to rapid phytoplankton community changes, high variability in cellular toxicity, and the selective uptake and loss of toxins, and/or transformation of toxins.  相似文献   

14.
Members of the Amoebophrya ceratii complex are endoparasitic dinoflagellates that parasitize a number of their dinoflagellate relatives, including toxic and/or harmful algal bloom-forming species. Despite many studies on the occurrence, prevalence, biology and molecular phylogeny of Amoebophrya spp., little attention has been given to toxin dynamics of host population following parasitism. Using Amoebophrya sp. infecting the paralytic shellfish toxin (PSP)-producing dinoflagellate Alexandrium fundyense, we addressed the following questions: (1) does parasitism by Amoebophrya sp. alter toxin content and toxin profiles of the dinoflagellate A. fundyense over the infection cycle? and (2) do parasite dinospores produced at the end of the infection cycle retain host toxins and thus potentially act as a vector to convey PSP toxin through the marine microbial food-web? Toxin time-course experiments showed that the PSP toxin contents did not vary significantly over the infection cycle, but mean toxin content for infected cultures was significantly higher than that for uninfected cultures. Host toxins were not detected in the free-living, dinospore stage of the parasite. Therefore, our results indicate that Amoebophrya sp. does not function as a vector for transferring PSP toxins to higher trophic levels. Rather, Amoebophrya infections appear to play an important role in maintaining healthy ecosystems by transforming potent toxins-producing dinoflagellates into non-toxic dinospores, representing “edible food” for consumers of the marine microbial food-web during toxic algal bloom event.  相似文献   

15.
Intracellular electrical potential and potassium activity was measured by means of microelectrodes in the epithelial cells of choroid plexus from bullfrogs (Rana catesbeiana). Ouabain applied from the ventricular side caused an abrupt depolarisation of 10 mV but only a gradual loss of potassium from the cells. Readministration of potassium to the ventricular solution of plexuses which were previously depleted of potassium, caused a hyperpolarisation of about 4 mV. These two experiments are consistent with the notion of an electrogenic Na+/K+ pump situated at the ventricular membrane and which pumps potassium into the cell and sodium into the ventricle. The numerical values obtained suggest that 3 sodium ions are pumped for 2 potassium ions. The permeability coefficient for potassium exit from the cell is calculated to be 1.24 · 10?5 cm?1 · s?1 expressed per cm2 of flat epithelium.  相似文献   

16.
The neuromuscular effects of four purified toxins and crude venom from the scorpion Androctonus australis were investigated in the extensor tibiae nerve-muscle preparation of the locust Locusta migratoria. Insect and crustacean toxin and the mammal toxins I and II which have previously been shown to act on fly larvae, isopods, and mice all paralyse locust larvae. The paralytic potencies decrease in the following order: insect toxin → mammal toxin I → crustacean toxin → mammal toxin II.The toxins and crude venom cause repetitive activity of the motor axons. This leads to long spontaneous trains of junction potentials in the case of crude venom and insect toxin. The other toxins chiefly cause short bursts of action and junction potentials following single stimuli.The ‘slow’ excitatory motor axon invariably is affected sooner than the inhibitory or the ‘fast’ excitatory one. The minimal doses of toxins required to affect the ‘slow’ motor axon decrease in an order somewhat different from that established for their paralytic potencies: insect toxin → crustacean toxin → mammal toxin I → mammal toxin II.Crude venom depolarises and destabilises the muscle membrane potential at low doses. At high doses it decreases the membrane resistance, whereas insect toxin leads to an increase.Crude venom and insect toxin enhance the frequency of mejps, whereas mammal toxin I leads to the occurrence of ‘giant’ mejps.The pattern of axonal activities indicates that the various peripheral branches of the motor nerve are the primary target of the toxins.The time course of nerve action potentials is affected by mammal toxin I and crustacean toxin which cause anomalous shapes and prolongations not caused by insect toxin.The results with other animals suggest that only the insect toxin is selective in its activity. The way it affects the axon might be quite different from that previously reported for scorpion venoms or toxins.  相似文献   

17.
Spectrofluorimetric measurements were conducted to quantify, in real-time, membrane permeability changes resulting from the treatment of Sf9 insect cells (Spodoptera frugiperda, Lepidoptera) with different Bacillus thuringiensis Cry insecticidal proteins. Coumarin-derived CD222 and Merocyanin-540 probes were respectively used to monitor extracellular K+ and membrane potential variations upon Sf9 cells incubation with Cry toxins. Our results establish that Cry1C induces, after a delay, the depolarization of the cell membrane and the full depletion of intracellular K+. These changes were not observed upon Sf9 cells treated with Cry1A family toxins. Both the rate of the K+ efflux and the delay before its onset were dependent on toxin concentration. Both parameters were sensitive to temperature but only the delay was affected by pH. Cry1C-induced K+ efflux was inhibited by lanthanum ions in a dose-dependent manner. This study provides the first kinetic and quantitative characterization of the ion fluxes through the channels formed by a Cry toxin in the plasma membrane of a susceptible insect cell line. Received: 4 October 1999/Revised: 21 December 1999  相似文献   

18.
Sucrose efflux from maize scutellum slices was promoted by high pH and by K+, Na+ or Rb+. Incubation in mannose (which drastically reduces the ATP level) caused high rates of sucrose efflux only when KCl was present at pH 8. The effects of triphenylmethylphosphonium ion (TPMP+, a lipid soluble cation) on sucrose efflux were similar to those of mannose plus KCl. Mannose and TPMP+ caused release of stored sucrose into the cytoplasm, but pH8 and KCl (mannose) or pH 8 (TPMP+) in the bathing solution were necessary for rapid efflux of sucrose. Rb+ uptake took place during sucrose efflux. In mannose, rates of Rb+ uptake and sucrose efflux were low at pH 5.6 and high at pH 8.0, although the time courses for uptake and efflux were different. It is concluded that sucrose efflux is electrogenic and that it occurs as sucrose-H+ symport. A scheme for sucrose transport across plasmalemma and tonoplast is presented.  相似文献   

19.
《Journal of Asia》1999,2(2):153-162
Pesticidal activity of different Bacillus thuringiensis (Bt) δ-endotoxins, Cry1Aa, Cry1Ab, Cry1Ac and Cry2A, were investigated against Helicoverpa armigera infesting cotton crop worldwide. Cry1Ac toxin was found to be the most potent toxin towards H. armigera. All selected Bt toxins were found stable in vitro processing by midgut juice of H. armigera. Saturation and competition binding experiments were performed with iodine-125 labeled proteins and brush border membrane vesicles prepared from the midgut of H. armigera. The results show saturable, specific and high affinity of all toxins except for Cry2A. Both the toxins were bound with low binding affinity but with high binding site concentration. Heterologous competition experiments showed that Cry1Aa, Cry1Ab and Cry1Ac recognized or share the same binding site which is different from that of Cry2A. The data suggest that development of multiple toxin system in transgenic plants with toxin pyramiding, which recognize different binding sites, may be useful in the deployment strategies to decrease the rate of pest adaptation to Bt toxins in transgenic plants.  相似文献   

20.
Exfoliative toxins of approximately 30 kDa produced by Staphylococcus hyicus strains NCTC 10350, 1289D-88 and 842A-88 were purified and specific polyclonal antisera were raised against each of the toxins. It was shown by immunoblot analysis and ELISA that three exfoliative toxins from S. hyicus were antigenically distinct. The three toxins were designated ExhA, ExhB and ExhC. From 60 diseased pigs, each representing an outbreak of exudative epidermitis, a total of 584 isolates of S. hyicus were phage typed and tested for production of exfoliative toxin. ExhA-, ExhB- and ExhC-producing S. hyicus isolates were found in 12 (20%), 20 (33%) and 11 (18%), respectively, of the 60 pig herds investigated. Production of the different types of exfoliative toxin was predominantly associated with certain phage groups. However, toxin production was found in all of the six phage groups defined by the phage typing system. Some changes in the distribution of isolates between phage groups were observed when the results of this study were compared to previous investigations. In this study two new antigenically distinct exfoliative toxins were isolated and tools for in vitro detection of toxin producing S. hyicus isolates and for further studies on the exfoliative toxins from S. hyicus have been provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号