首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The neutralizing epitope (K-COE) of the spike protein from a Korean strain of porcine epidemic diarrhea virus (PEDV) has been shown to prevent and foster an immune response to PED, when orally adjusted. The cell surface of the budding yeast,Saccharomyces cerevisiae, was engineered to anchor the K-COE on the outer layer of the cell, and consequently, the altered yeast was applied as a dietary complement for animal feed, with immunogenic functions. In this study, the K-COE gene (K-COE) of the Korean strain of PEDV with the signal peptide of rice amylase 1A (Ramy 1A), was fused with the gene encoding the carboxyterminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a mating associated protein that is anchored covalently to the cell wall. The glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter was selected in order to direct the expression of the fusion construct, and the resulting recombinant plasmid was then introduced intoS. cerevisiae. The surface display of K-COE was visualized via confocal microscopy using a polyclonal antibody against K-COE as the primary antibody, and FITC (fluorescein isothiocyanate)-conjugated goat anti-mouse IgG as the secondary antibody. The display of the K-COE on the cell surface was further verified via Western blot analysis using the cell wall fraction after the administration of α-1,3-glucanase/PNGase F/β-mannosidase treatment.  相似文献   

2.
Porcine epidemic diarrhea virus (PEDV) causes acute enteritis in pigs of all ages and is often fatal for neonates. A tobacco mosaic virus (TMV)-based vector was utilized for the expression of a core neutralizing epitope of PEDV (COE) for the development of a plant-based vaccine. In this study, the coding sequence of a COE gene was optimized based on the modification of codon usage in tobacco plant genes and the removal of mRNA-destabilizing sequences. The native and synthetic COE genes were cloned into TMV-based vectors and expressed in tobacco plants. The recombinant COE protein constituted up to 5.0% of the total soluble protein in the leaves of tobacco plants infected with the TMV-based vector containing synthetic COE gene, which was approximately 30-fold higher than that in tobacco plants infected with TMV-based vector containing a native COE gene. Therefore, this result indicates that the plant viral expression system with a synthetic gene optimized for plant expression is suitable to produce a large amount of antigen for the development of plant-based vaccine rapidly.  相似文献   

3.
Transgenic plants expressing recombinant proteins from pathogenic microorganisms provide an inexpensive edible vaccine for induction of local immunity. A neutralizing epitope of porcine epidemic diarrhea virus (PEDV) gene containing SEKDEL was expressed in potato using Agrobacterium-mediated transformation system. Putative transgenic plants were regenerated, and genomic PCR confirmed the presence of PEDV epitope gene in the potato plants. Based on the ELISA results, epitope of PEDV protein made up approximately 0.1% of the total soluble tuber protein.  相似文献   

4.
Porcine epidemic diarrhea (PED) is a severe diarrhea disease in swine that is caused by porcine epidemic diarrhea virus (PEDV). Nucleocapsid (N) protein is the RNA-binding protein of PEDV, which plays an important role for virus life cycle. The aim of this research was to screen and characterize the compounds that could inhibit the activity of PEDV N protein. The gene encoding PEDV N protein obtained from PEDV Thai isolate was cloned and expressed in E. coli. Its amino acid sequence was employed to generate the three dimensional structure by homology modeling. There were 1,286 compounds of FDA-approved drug database that could virtually bind to the RNA-binding region of N protein. Three compounds, trichlormethiazide, D-(+) biotin, and glutathione successfully bound to the N protein, in vitro, with the IC50 at 8.754?mg/mL, 0.925?mg/mL, and 2.722?mg/mL. Antiviral activity in PEDV-infected Vero cells demonstrated that the effective concentration of trichlormethiazide, D-(+) biotin, and glutathione in inhibiting PEDV replication were 0.094, 0.094 and 1.5?mg/mL. This study demonstrated a strategy applied for discovery of antiviral agents capable of inhibiting PEDV N protein and PEDV replication. The compounds identified here exhibited a potential use as therapeutic agents for controlling PEDV infection.  相似文献   

5.
Y Pan  X Tian  W Li  Q Zhou  D Wang  Y Bi  F Chen  Y Song 《Virology journal》2012,9(1):195
ABSTRACT: An outbreak of diarrhea in pigs started in Guangdong, South China in January 2011. Cases were characterized by watery diarrhea, dehydration and vomiting, with 80--100% morbidity and 50--90% mortality in suckling piglets. The causative agent of the diarrhea was ultimately identified as porcine epidemic diarrhea virus (PEDV). In this study, we isolated a PEDV strain designated CHGD-01 from piglet intestines using Vero cell cultures, and its specific cytopathic effects were confirmed in susceptible cells by direct immunofluorescence testing and electron microscopy. The complete genome of CHGD-01 was shown to be 28,035 nucleotides in length, with a similar structure to that of PEDV reference strains. Phylogenetic analyses based on the whole genome revealed that CHGD-01 shared nucleotide sequence identities of 98.2--98.4% with two other Chinese isolates reported in the same year, thus constituting a new cluster. Amino acid sequence analysis based on individual virus genes indicated a close relationship between the spike protein gene of CHGD-01 and the field strain KNU0802 in Korea. Its ORF3 and nucleoprotein genes, however, were divergent from all other sequenced PEDV isolate clusters and therefore formed a new group, suggesting a new variant PEDV isolate in China. Further studies will be required to determine the immunogenicity and pathogenicity of this new variant.  相似文献   

6.

The porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family, which causes acute diarrhea in pigs with higher mortality in piglets less than 2 weeks old. The PEDV is one of the major concerns of the pig industry around the world, including Asian countries and Noth America since first identified in Europe. Currently, there is no PEDV licensed vaccine to effectively prevent this disease. This study was performed for the development of a mucosal PEDV vaccine and B subunit of cholera toxin (CTB) as a carrier was employed to surpass the tolerogenic nature of GALT and induce potent immune responses against the target antigen fused to CTB. An epitope (S1D) alone or conjugated with CTB was constructed into the tobacco chloroplasts expression vector which is controlled under the chloroplast rRNA operon promoter with T7g10 5′ UTR and the psbA 3′UTR as a terminator. The homoplastomic lines were obtained by third round screening via organogenesis from the leaf tissues which were verified by PCR with antigen and chloroplast specific primers and then confirmed by Southern blot analysis. While the expression level of the S1D alone as detected by Western blotting was approximately 0.07% of total soluble protein, the CTB-S1D fusion protein was expressed up to 1.4%. The fusion protein showed binding to the intestinal membrane GM1-ganglioside receptor, demonstrating its functionality. The result shows that the highest expression of S1D could be achieved by fusion with a stable CTB protein and chloroplast transformation. Furthermore, the CTB-S1D expressed in chloroplasts of Nicotiana tabacum cv. Maryland could be assembled to pentameric form which increases the possibility to develop a mucosal vaccine against PEDV.

  相似文献   

7.
A virulent porcine epidemic diarrhea virus (PEDV) strain, DR13, was obtained from suckling pigs suspected of having porcine epidemic diarrhea in 1999 in Korea, and its attenuated counterpart was derived from virulent strain DR13 by serial propagation in Vero cells. This report describes the first complete genome sequences of virulent PEDV and its attenuated counterpart, which will provide important insights into the molecular basis of the attenuation of PEDV.  相似文献   

8.
以猪流行性腹泻病毒CH/JL毒株的RNA为模板,通过RT-PCR扩增获得的3个相互重叠的cDNA克隆覆盖了S基因,序列比对结果表明:PEDV CH/JL株S基因与CV777、Brl/87、JS、KPEDV和Chinju99毒株S基因核苷酸序列的同源性分别为96.97%、96.87%、96.41%、94.02%和93.93%,氨基酸序列的同源性分别为96.17%、95.88%、96.10%、92.36%和92.05%;分子进化树分析结果显示,PEDV CH/JL株S基因与JS毒株S基因亲缘关系最近,处于同一群。利用DNAstar Protean程序预测了PEDV CH/JL株S蛋白一个抗原表位区(83~276aa),将其克隆到原核表达载体pGEX-6p-1后转化E.coliBL21(DE3)感受态细胞,在终浓度1.0mmol/L的IPTG诱导下获得了表达,Western blot结果显示,预测的抗原表位区GST融合蛋白能与猪流行性腹泻病毒多克隆抗血清反应,提示该抗原表位区含有线性抗原表位。  相似文献   

9.
The DNA sequence of a truncated cry1C gene encoding the active fragment of Bacillus thuringiensis (Bt) delta-endotoxin was fully reconstructed by introduction of silent mutations. Each of the truncated wild type and the synthetic genes encoding the active fragment of the protoxin was introduced into haploid tobacco plants under the control of the rbcS promoter. To facilitate selection of transgenic tobacco plants with high insecticidal activity, a fusion gene encoding both rat CYP1A1 cytochrome P450 and yeast NADPH-P450 oxidoreductase was cotransformed with the wild type cry1C gene. The synthetic gene elevated the levels of Cry1C protein and the mRNA in transgenic tobacco plants as well as mortality in Spodoptera litura larvae. The Cry1C protein was accumulated mainly in the leaf tissues of the transgenic tobacco plants. The results reported here imply that the green-tissue-specific expression of the synthetic cry1C gene is useful for the control of S. litura which was rather resistant to the other types of Bt toxins.  相似文献   

10.
11.
The plasmids carrying the gene encoding the hepatitis B surface antigen (HBsAg) under the control of 35S RNA single or dual promoters of the cauliflower mosaic virus CaMV 35S were constructed. These constructions were used for obtaining transgenic tobacco plants that synthesize the HBS antigen. The presence of HBsAg in tobacco plant extracts was confirmed by the enzyme-linked immunoassay using antibodies against the native HBs antigen. The antigen amount in plants carrying the HbsAg gene under a single 35 S promoter was 0.0001-0.001 of the total soluble protein whereas the use of a dual 35S promoter increased the antigen synthesis to 0.002-0.05% of the protein. The antigen-synthesizing ability was inherited by the offspring. In the F1 plants, the antigen expression varied in different lines comprising 0.001 to 0.03% of the total soluble protein, which corresponded to the antigen amount in the F0 plants.  相似文献   

12.
【目的】建立一种快速、特异、敏感的检测血清中猪流行性腹泻病毒(PEDV)抗体的方法。【方法】利用生物学软件对PEDV S蛋白进行抗原位点分析,选择S蛋白的主要抗原表位区进行原核表达。采用SDS-PAGE和Western-blot对重组蛋白进行鉴定及抗原性分析。用纯化的重组蛋白作为包被抗原,经过条件优化、特异性和重复性试验,建立一种针对血清中PEDV抗体的间接ELISA检测方法。【结果】表达了重组S蛋白,重组的S蛋白能与PEDV阳性血清发生特异性反应,并建立一种基于重组S蛋白的间接ELISA检测方法。组内及组间变异系数均小于10%,重复性较好。建立的间接ELISA检测方法分别与商品化PEDV抗体检测试剂盒和Western-blot鉴定结果相比,两者符合率分别为86.67%和88.89%。【结论】建立的间接ELISA方法可以用于PEDV抗体的检测。  相似文献   

13.
ORF3蛋白促进猪流行性腹泻病毒在Vero细胞上的增殖   总被引:2,自引:1,他引:1  
【背景】猪流行性腹泻(Porcine epidemic diarrhea,PED)是由猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)感染猪而引起的一种急性肠道传染病,常导致病猪水样腹泻、呕吐、脱水。自2010年起,其大规模的暴发给养猪业造成巨大的经济损失。由于对PEDV免疫机理及侵入机制知之甚少,至今仍缺乏有效的PED防治措施。【目的】研究orf3对PEDV体外增殖的影响。【方法】利用基于RNA同源重组的PEDV反向遗传学操作技术拯救一系列携带不同orf3基因及orf3基因缺失的重组PEDV;将获得的重组PEDV以MOI 0.1感染Vero细胞,分别于感染的第8、16、24、32、40、48 h测定其TCID_(50)并绘制病毒生长曲线;分别在感染25 h和36 h利用全自动细胞计数分析仪对6孔板内的细胞进行计数,并于感染后的第12、24、36、48 h用CCK-8试剂盒对其细胞活力进行测定。【结果】RT-PCR结果及细胞病变观察证明成功拯救到了携带不同orf3基因或orf3基因缺失的重组PEDV;进一步的免疫组化分析结果证实PEDV的ORF3蛋白可以在Vero细胞中合成。SPSS软件分析表明携带orf3基因的重组PEDV的滴度(TCID_(50))显著高于缺失orf3基因的重组PEDV的滴度;带有orf3基因的重组PEDV感染Vero细胞25 h和36 h时的活细胞数显著高于缺失orf3基因的重组病毒感染相同时间时的活细胞数;而且重组PEDV感染Vero细胞24 h后,带有orf3基因的重组PEDV的细胞活性显著高于缺失orf3基因的重组病毒。【结论】ORF3蛋白对于PEDV在Vero细胞中的增殖具有促进作用,该作用是通过延缓或减少感染细胞的死亡实现的。本研究为揭示PEDV orf3基因的功能和PEDV复制机制的研究提供理论基础。  相似文献   

14.
【背景】由猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)引起的猪流行性腹泻给养猪业造成了巨大的经济损失。PEDV S蛋白可以诱导宿主产生中和抗体。【目的】原核表达PEDV CV777疫苗株S2截短肽(aa:961-1 382)并制备其多克隆抗体;鉴定表达的S2截短肽上的线性B细胞表位区。【方法】将经密码子优化的PEDV S2截短肽编码DNA (s2t)克隆至载体p ET-28a中并转化Escherichia coli BL21(DE3),利用IPTG诱导S2截短肽表达。以经SDS-PAGE切胶纯化的重组S2截短肽免疫新西兰大白兔制备多克隆抗体。在E. coli BL21中GST融合表达覆盖S2截短肽序列全长、彼此重叠8个氨基酸残基的系列16肽。以制备的抗S2截短肽兔血清为一抗,通过Westernblot(WB)筛选系列16肽中的阳性反应性16肽,鉴定S2截短肽上的线性B细胞表位区。【结果】重组PEDV S2截短肽的相对分子质量约为50 kD;诱导4 h表达量最高,且主要形成包涵体。WB结果显示,纯化的S2截短肽能被猪抗PEDV血清识别;以纯化的S2截短肽免疫新西兰大白兔制备多抗血清,ELISA法检测抗体效价位于1:25 600-1:102 400之间。免疫组化和间接免疫荧光分析均表明,制备的多抗血清可以识别Vero细胞培养的PEDV DR13弱毒株。以制备的多抗血清通过WB从52个GST融合表达的16肽中鉴定到11个阳性反应性16肽。WB分析显示,得到的阳性反应性16肽都可以被猪抗PEDV血清识别。鉴定到的阳性16肽在S2截短肽上形成4个线性B细胞表位区(aa:969-984;1 065-1 096;1 225-1 280;1 361-1 382)。【结论】高效价抗PEDV S2截短肽多克隆抗体的制备和S2截短肽上线性B细胞抗原表位区的确定有助于了解S蛋白的结构与功能,为建立有效的PEDV检测方法奠定了基础。  相似文献   

15.
16.
17.
【目的】阐明猪流行性腹泻病毒(PEDV)核衣壳蛋白与病毒感染细胞核仁成分B23.1蛋白的共定位特征。【方法】分别参照GenBank中PEDV CV777株的N基因序列(AF353511)和编码人细胞核仁蛋白B23.1基因序列(BC050628.1),设计、合成扩增N基因和B23.1基因的引物,利用RT-PCR技术扩增了N基因和Vero E6细胞的B23.1基因的cDNA,分别克隆到真核表达载体pAcGFP1-C1和pDsRed2-N1,获得重组质粒pAcGFP1-C1/N和pDsRed2-N1/B23.1,共转染Vero E6细胞。【结果】Western blots分析表明这些融合蛋白在转染的Vero E6细胞中表达;共聚焦显微镜技术分析表明在共转染Vero E6细胞中猪流行性腹泻病毒N蛋白与Vero E6细胞核磷蛋白B23.1发生共定位。【结论】为进一步鉴定PEDV N蛋白中核仁定位信号和N蛋白核仁定位机制提供可靠依据。  相似文献   

18.
为研究猪流行性腹泻病毒(porcine epidemic diarrhea virus PEDV)S基因片段的原核表达产物是否具有抗原性,分析S基因抗原位点后,用PCR技术扩增S蛋白主要抗原区的核酸序列,经克隆后将目的片段连接到原核表达载体pET-28a(+)中,成功构建了重组质粒pET-28a-PEDV-Sp,其重组菌于37℃、0.5 mmol/L IPTG诱导表达4 h后进行SDS-PAGE分析,在分子质量约为29 kDa处出现一新蛋白带,与预期相符。质谱鉴定表明,已成功表达了目的蛋白。纯化后的重组蛋白免疫兔制备多克隆抗体,抗体效价检测结果显示该蛋白具有良好的抗原性。该研究为猪流行性腹泻基因工程疫苗的研制奠定基础。  相似文献   

19.
2S albumin seed storage proteins undergo a complex series of posttranslational proteolytic cleavages. In order to determine if this process is correctly carried out in transgenic plants, the gene AT2S1 encoding an Arabidopsis thaliana 2S albumin isoform has been expressed in transgenic tobacco. Initial experiments using a reporter gene demonstrated that the AT2S1 promoter directs seed specific expression in both transgenic tobacco and Brassica napus plants. The entire AT2S1 gene was then transferred into tobacco plants, where it showed a tissue specific and developmentally regulated expression. Arabidopsis 2S albumin accumulates up to 0.1% of the total high-salt extractable seed protein. Protein sequencing demonstrated that the amino termini of the two Arabidopsis 2S albumin subunits were correctly processed, suggesting that the protease(s) necessary for posttranslational processing of 2S albumin precursors may display common specificities among different dicot plant species. Immunocytochemical studies showed that the Arabidopsis 2S albumin is localized in the protein body matrix of tobacco endosperm and embryo. Correct processing and targeting of the 2S albumin in transgenic plants suggests that modified versions could be expressed, allowing the study of 2S albumin processing and in particular the possible roles of the processed fragments in protein stability and/or targeting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号