首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the complex of beta-cyclodextrin (beta-CD) with 1,12-dodecanediol has been determined at 173 K and refined to a final R=0.0615 based on 22,386 independent reflections. The complex crystallizes in the triclinic space group P1; with a=17.926(4), b=15.399(3), c=15.416(3) A, alpha=103.425(4), beta=113.404(4), gamma=98.858(4) degrees, D(c)=1.362 Mg cm(-3) and V=3651.4(13) A(3) for Z=1. One molecule of the diol is located as a guest in the hydrophobic cavity of a beta-CD-dimer, forming a [3]pseudorotaxane. The guest molecule shows a disorder over two positions. The hydroxyl groups of the diol emerge from the primary faces of the beta-CD dimer and form several hydrogen bonds with water molecules lying in the interstitial space, similarly to dimeric complexes of beta-CD with other alpha,omega-bifunctional guests.  相似文献   

2.
In contact with mother liquor, crystalline beta-cyclodextrin (beta-CD) hydrate has composition approximately beta-CD.12H2O. If crystals are dried at ambient conditions (18 degrees C, approximately 50% humidity), the unit cell volume diminishes approximately 30 to 50 A3. X-ray structure analysis of a dry crystal (0.89 A resolution, 4617 data, R = 0.059) showed the composition beta-CD.10.5 H2O, with approximately 5.5 water molecules in the beta-CD cavity (7 partially and 2 fully occupied sites) and approximately 5.0 between the beta-CD molecules. The positions of the beta-CD host and of most of the hydration waters are conserved during dehydration, but the occupancies of the waters in the beta-CD cavity diminish. Dry crystals put into solvent re-hydrate to the original form. The mechanism of de- and re-hydration is not evident.  相似文献   

3.
Aree T  Chaichit N 《Carbohydrate research》2008,343(13):2285-2291
The crystal form III of the beta-cyclodextrin (beta-CD)-ethanol inclusion complex [2(C(6)H(10)O(5))(7).1.5C(2)H(5)OH.19H(2)O] belongs to the triclinic space group P1 with unit cell constants: a=15.430(1), b=15.455(1), c=17.996(1)A, alpha=99.30(1) degrees , beta=113.18(1) degrees , gamma=103.04(1) degrees . beta-CD forms dimers comprising two identical monomers that adopt a 'round' conformation stabilized by intramolecular, interglucose O-3(n)cdots, three dots, centeredO-2(n+1) hydrogen bonds. The two beta-CD monomers of form III are isostructural to that of form I in the monoclinic space group P2(1) [Steiner, T.; Mason, S. A.; Saenger, W. J. Am. Chem. Soc.1991, 113, 5676-5687], but exhibit a striking difference from that of form II in the monoclinic space group C2 [Aree, T.; Chaichit, N. Carbohydr. Res.2003, 338, 1581-1589]. The small guest EtOH molecule orients differently in the large beta-CD cavity. In form III, two disordered EtOH molecules are embedded in the beta-CD-dimer cavity. A half occupied EtOH molecule (#1) is located above the O-4 plane of beta-CD #1, whereas another doubly disordered EtOH molecule (#2, #3) is situated at about the middle of the beta-CD-dimer cavity. The three EtOH sites are maintained in positions by making van der Waals contacts to each other and to the surrounding water sites and beta-CD O-3-H group. The EtOH molecules disordered (occupancy 0.3) above the beta-CD O-4 plane in form I and fully occupied beneath the O-4 plane in form II are strongly held in positions by hydrogen bonding with the surrounding water site and beta-CD O-6-H, O-3-H groups. Occurrence of the beta-CD dimer as a structural motif of channel-type packing (form II) and layer-type packing (form III) is attributed to the higher tendency for self aggregation under the moderate acidic conditions. At weak acidic conditions, beta-CD prefers a herringbone mode (form I).  相似文献   

4.
The inclusion complex beta-cyclodextrin.2,7-dihydroxynaphthalene.4.6 H(2)O crystallized in the monoclinic space group P2(1), with a=14.082(3), b=19.079(4), c=12.417(3) A, beta=109.28(3) degrees, V=3149.0(11) A(3), and Z=2. An X-ray study performed at room temperature shows that the crystal packing is of the herringbone type with one 2,7-dihydroxynaphthalene included completely in the beta-CD cavity, its long axis being oriented along the beta-CD molecular axis, and 4.6 water molecules are placed in the interstitial space. The beta-CD macrocycle is elliptically distorted, and the guest molecule is held in the hydrophobic beta-CD cavity by C-H...O and C-H...pi interactions.  相似文献   

5.
Aree T  Chaichit N 《Carbohydrate research》2003,338(15):1581-1589
A new crystal form of beta-cyclodextrin (beta-CD)[bond]ethanol[bond]dodecahydrate inclusion complex [(C(6)H(10)O(5))(7).0.3C(2)H(5)OH.12H(2)O] belongs to monoclinic space group C2 (form II) with unit cell constants a=19.292(1), b=24.691(1), c=15.884(1) A, beta=109.35(1) degrees. The beta-CD macrocycle is more circular than that of the complex in space group P2(1) [form I: J. Am. Chem. Soc. 113 (1991) 5676]. In form II, a disordered ethanol molecule (occupancy 0.3) is placed in the upper part of beta-CD cavity (above the O-4 plane) and is sustained by hydrogen bonding to water site W-2. In form I, an ethanol molecule located below the O-4-plane is well ordered because it hydrogen bonds to surrounding O-3[bond]H, O-6[bond]H groups of the symmetry-related beta-CD molecules. In the crystal lattice of form I, beta-CD macrocycles are stacked in a typical herringbone cage structure. By contrast, the packing structure of form II is a head-to-head channel that is stabilized at both O-2/O-3 and O-6 sides of each beta-CD by direct O(CD)...O(CD) and indirect O(CD)...O(W)...(O(W))...O(CD) hydrogen bonds. The 12 water molecules are disordered in 18 positions both inside the channel-like cavity of beta-CD dimer (W-1[bond]W-6) and in the interstices between the beta-CD macrocycles (W-7[bond]W-18). The latter forms a cluster that is hydrogen bonded together and to the neighboring beta-CD O[bond]H groups.  相似文献   

6.
Soman (pinacolyl methylphosphonofluoridate), a mixture of four stereoisomers, is inactivated appreciably in Tris buffer, pH 7.40, mu = 0.155 at 25 degrees C by beta-cyclodextrin (cycloheptaamylose, beta-CD). Under these conditions, the dissociation constant Kd of the 1:1 complex formed by beta-CD and soman and the rate constant k2 for the phosphonylation of beta-CD by soman are (0.53 +/- 0.05)mM and (5.9 +/- 0.6) X 10(-2) min-1 respectively. It results that the inactivation of soman by the mono-anion of beta-CD is about 2,600 times faster than the hydrolysis of soman by the hydroxide ion. The inactivation of both P(-) isomers of soman by beta-CD proceeds apparently at the same rate but both P(+) isomers react more slowly. Thus the interaction is stereospecific. The inactivation of soman by beta-CD appears to be as fast in human plasma in vitro as in Tris buffer.  相似文献   

7.
The inclusion complex of beta-cyclodextrin (beta-CD) with benzoic acid (BA) has been characterized crystallographically. Two beta-CDs cocrystallize with two BAs, 0.7 ethanol and 20.65 water molecules [2(C(6)H(10)O(5))(7).2(C(7)H(6)O(2)).0.7(C(2)H(6)O).20.65H(2)O] in the triclinic space group P1 with unit cell constants: a=15.210(1), b=15.678(1), c=15.687(1) A, alpha=89.13(1), beta=74.64(1), gamma=76.40(1) degrees. The anisotropic refinement of 1840 atomic parameters against 16,201 X-ray diffraction data converged at R=0.078. In the crystal lattice, beta-CD forms dimers stabilized by direct O-2(m)_1/O-3(m)_1...O-2(n)_2/O-3(n)_2 hydrogen bonds (intradimer) and by indirect O-6(m)_1...,O-6(n)_2 hydrogen bonds with one or two bridging water molecules joined in between (interdimer). These dimers are stacked like coins in a roll constructing endless channels where the guest molecules are included. The BA molecules protrude with their COOH groups at the beta-CD O-6-sides and are maintained in positions by hydrogen bonding to the surrounding O-6-H groups and water molecules. Water molecules (20.65) are distributed over 30 positions in the interstices between beta-CD molecules, except the water sites W-1, W-2 that are located in the channel of the beta-CD dimer. Water site W-2 is hydrogen bonded to the disordered ethanol molecule (occupancy 0.7).  相似文献   

8.
A synthesis of beta-cyclodextrin (beta-CD) dimer, containing two beta-CD moieties that are linked through their sides by ethylenediamine, was presented. The dimer was characterized by means of IR, (1)H NMR, (13)C NMR, and elemental analysis. The inclusion complexation behavior of beta-cyclodextrin dimer with tranilast was studied in an aqueous KH(2)PO(4)-citric acid buffer solution of pH 2.00 at room temperature by spectrofluorimetry. Based on the significant enhancement of fluorescence intensity of tranilast, a spectrofluorimetric method with high sensitivity and selectivity was developed for the determination of tranilast in bulk aqueous solution in the presence of ethylenediamine beta-CD dimer. The apparent association constant of the complex was 8.39 x 10(3) L mol(-1), and the linear range was 10.8-1.40 x 10(4) ng mL(-1) with the detection limit 3.2 ng mL(-1). There was no interference from the excipients normally used in tablets and serum constituents. The proposed method was successfully applied to the determination of tranilast in serum.  相似文献   

9.
A new thermostable dipeptidase gene was cloned from the thermophile Brevibacillus borstelensis BCS-1 by genetic complementation of the D-Glu auxotroph Escherichia coli WM335 on a plate containing D-Ala-D-Glu. Nucleotide sequence analysis revealed that the gene included an open reading frame coding for a 307-amino-acid sequence with an M(r) of 35,000. The deduced amino acid sequence of the dipeptidase exhibited 52% similarity with the dipeptidase from Listeria monocytogenes. The enzyme was purified to homogeneity from recombinant E. coli WM335 harboring the dipeptidase gene from B. borstelensis BCS-1. Investigation of the enantioselectivity (E) to the P(1) and P(1)' site of Ala-Ala revealed that the ratio of the specificity constant (k(cat)/K(m)) for L-enantioselectivity to the P(1) site of Ala-Ala was 23.4 +/- 2.2 [E = (k(cat)/K(m))(L,D)/(k(cat)/K(m))(D,D)], while the D-enantioselectivity to the P(1)' site of Ala-Ala was 16.4 +/- 0.5 [E = (k(cat)/K(m))(L,D)/(k(cat)/K(m))(L,L)] at 55 degrees C. The enzyme was stable up to 55 degrees C, and the optimal pH and temperature were 8.5 and 65 degrees C, respectively. The enzyme was able to hydrolyze L-Asp-D-Ala, L-Asp-D-AlaOMe, Z-D-Ala-D-AlaOBzl, and Z-L-Asp-D-AlaOBzl, yet it could not hydrolyze D-Ala-L-Asp, D-Ala-L-Ala, D-AlaNH(2), and L-AlaNH(2.) The enzyme also exhibited beta-lactamase activity similar to that of a human renal dipeptidase. The dipeptidase successfully synthesized the precursor of the dipeptide sweetener Z-L-Asp-D-AlaOBzl.  相似文献   

10.
The binding of Ru(phen)(2)dppz(2+) (dppz=dipyrido[3,2-a:2',3'-c]phenazine) to DNA was investigated at pH 7.0 and 25 degrees C using stopped-flow and spectrophotometric methods. Equilibrium measurements show that two modes of binding, whose characteristics depend on the polymer to dye ratio (C(P)/C(D)), are operative. The binding mode occurring for values of C(P)/C(D) higher than 3 exhibits positive cooperativity, which is confirmed by kinetic experiments. The reaction parameters are K=2 x 10(3)M(-1), omega=550, n=1, k(r)=(1.9+/-0.5) x 10(7)M(-1)s(-1) and k(d)=(9.5+/-2.5)x10(3)s(-1) at I=0.012 M. The results are discussed in terms of prevailing surface interaction with DNA grooves accompanied by partial intercalation of the dppz residue. The other binding mode becomes operative for C(P)/C(D)<3 and the equilibria analysis shows this is an ordinary intercalation mode (K=1.3 x 10(6) M(-1), n=1.5 at I=0.012 M and K=2 x 10(5) M(-1), n=1.2 at I=0.21 M). Similar behaviour is displayed by double-stranded poly(A).  相似文献   

11.
Polarographic and UV-spectrophotometric investigations of Pb(II) complex formation with beta-cyclodextrin have showed that the complexation of Pb(II) ions begins at pH >10. The formation of lead(II) 1:1 complex with the beta-cyclodextrin anion was observed at pH 10-11.5. The logarithm of the stability constant of this complex compound is 15.9+/-0.3 (20 degrees C, ionic strength 1.0), and the molar extinction coefficient value is ca. 5500 (lambda(max)=260 nm). With further increase in solution pH the Pb-beta-cyclodextrin complex decomposes and converts to Pb(OH)(2) or Pb(OH)(3)(-) hydroxy-complexes. This process occurs with a decrease in Pb(II) complexation degree. The latter result could be explained by a decrease in the beta-cyclodextrin anion activity. Neither Pb(OH)(2) nor Pb(OH)(3)(-) encapsulation into beta-CD cavity was observed.  相似文献   

12.
The extraction of chamomile flowers using supercritical carbon dioxide was investigated with respect to extraction efficiency and compared with solvent extraction. The stability of matricine, a sensitive constituent of the essential oil of chamomile, in these extracts was studied during storage at different temperatures over 6 months. Matricine was stable at -30 degrees C. A slight decrease (80-90% recovery) occurred at +5 degrees C, whereas complete decomposition of matricine took place within 3-4 months at room temperature and at +30 degrees C, respectively. An in-line inclusion of chamomile constituents in beta-cyclodextrin (beta-CD) during the extraction process was assessed and inclusion rates between 40 and 95% were obtained depending on the amount of beta-CD and the type of chamomile constituent. No further stabilization of matricine in the carbon dioxide extract/beta-CD complexes was achieved. High residual water contents in the complexes even after freeze-drying were identified as accelerating the decomposition. In addition, the extractability of flavonoids, such as apigenin and apigenin-7-glucoside, was determined. Apigenin-7-glucoside, the more hydrophilic substance, was not extractable with pure carbon dioxide and showed a recovery of 11% using methanol modified carbon dioxide (18%, w/w) at 60 degrees C and 380 bar. Extraction conditions in the two-phase region of the binary mixture carbon dioxide-methanol (70 degrees C, 100 bar) led to a drastic change in fluid polarity and hence extractability increased to 92-95%.  相似文献   

13.
Tang B  Liu F  Xu K  Tong L 《The FEBS journal》2008,275(7):1510-1517
A novel metallobridged bis(beta-cyclodextrin)s 2 [bis(beta-CD)s 2] was synthesized and characterized by means of (1)H NMR, IR, element analysis and redox iodometric titration. The fluorescence of metallobridged bis(beta-CD)s 2 was weak compared with bis(beta-CD)s 1 because of the paramagnetism of copper (II) ions. Glutathione was able to form complexes with copper (II) derived from the metallobridged bis(beta-CD)s 2. This competitive complexation with copper (II) may lead to a significant fluorescence recovery of the bis(beta-CD)s. Therefore, a rapid and simple spectrofluorimetric method was developed for the determination of glutathione. The analytical application for glutathione was investigated in NaCl/P(i) (pH 6.00) at room temperature. The linear range of the method was 0.30-20.0 micromol.L(-1) with a detection limit of 63.8 nmol.L(-1). There was no interference from the plasma constituents. The proposed method had been successfully used to determine glutathione in human plasma.  相似文献   

14.
Su X  Luo K  Xiang Q  Lan J  Xie R 《Chirality》2009,21(5):539-546
Two kinds of novel chiral molecular tweezers containing imidazoliums were synthesized from L-alanine, L-phenylalanine, and L-glutamic acid. They are constructed by the chiral imidazolium pincers and two different spacers which are 1,3-bis (bromomethyl)benzene and 2,6-bis(bromomethyl)pyridine, respectively. The enantioselective recognition of L- and D-amino acid derivatives by these molecular tweezers was investigated by UV spectroscopic titration experiments and good enantioselectivities were obtained, which are highly sensitive to whether the spacer has the binding site and the pincers has the other aromatic rings besides imidazolium ring. The host molecular 3b.2PF6- showed remarkable enantioselectivity for N-Boc protected histidine methyl ester, affording K(L)/K(D) of 5.10.  相似文献   

15.
The bioavailability of Delta(9)-tetrahydrocannabinol (THC) was determined after its sublingual administration as solid THC/beta-cyclodextrin (THC/beta-CD) complex, and was compared to oral administration of ethanolic THC, in rabbits. The absolute bioavailability of THC after sublingual administration of solid THC/beta-CD complex powder (16.0 +/- 7.5%; mean +/- SD; n = 4) is higher than the bioavailability of THC after oral administration of ethanolic THC solution (1.3 +/- 1.4%; mean +/- SD; n = 4). The results suggest that sublingual administration of THC/beta-CD complex is a useful tool in improving absolute bioavailability of THC.  相似文献   

16.
The main objective of this work was to study an inclusion complex between enalapril (ENA), and beta-cyclodextrin (beta-CD). From nuclear magnetic resonance (NMR) we determined that the complex showed a 1:1 stoichiometry, with an apparent formation constant (K(C)) of 439 and 290 M(-1) for the cis and trans isomers, respectively. The molecular modeling and NMR techniques demonstrated that the aromatic moiety of ENA was inserted into the hydrophobic cavity of beta-CD. When studying the chemical stability of ENA complexed to beta-CD, a clear stabilizing effect was observed in both the aqueous solution and solid state.  相似文献   

17.
Aree T  Chaichit N 《Carbohydrate research》2002,337(24):2487-2494
beta-Cyclodextrin (beta-CD) crystallizes from 27% DMSO-water as beta-CD.0.5DMSO.7.35H(2)O in the monoclinic space group P2(1) with unit cell constants: a=15.155(1), b=10.285(1), c=20.906(1) A, beta=109.86(1) degrees. Anisotropic refinement of 888 atomic parameters against 9,127 X-ray diffraction data converged at an R-factor of 0.055. The beta-CD macrocycle adopts a 'round' conformation stabilized by intramolecular, interglucose O-3(n) triplebond O-2(n+1) hydrogen bonds. In the beta-CD cavity, DMSO, water sites W-1, W-3 (occupancies 0.5, 0.25, 0.75) are not located concurrently with the water site W-2 because the interatomic distances to W-2 are too short (1.56-1.75 A). DMSO is placed in the beta-CD cavity such that its S-atom is shifted from the O-4 plane center to the beta-CD O-6-side ca. 0.9 A and the C-S bond which is inclined 13.6 degrees to the beta-CD molecular axis. It is maintained in position by hydrogen bonding to water site W-3 and the O-31-H group. 7.35 water molecules are extensively disordered in 13 positions both inside (W-1-W-4) and outside (W-5-W-13) the beta-CD cavity. They act as hydrogen bonding mediators contributing significantly to the stability of the crystal structure.  相似文献   

18.
Wang R  Jia ZP  Fan JJ  Hu XL  Li YM  Chen LR  Xie JW  Zhang Q 《Chirality》2004,16(1):45-49
A capillary electrophoresis method was developed to separate the enantiomers of cefoperazone. Different cyclodextrins, including alpha-cyclodextrin (alpha-CD), beta-cyclodextrin (beta-CD), gamma-cyclodextrin (gamma-CD), 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD), and methyl-beta-cyclodextrin (Me-beta-CD), were tested as chiral additives in the running buffer. The effect of various parameters on enantioseparation such as concentration of NaH(2)PO(4), buffer pH, and CD concentration was also studied. The cefoperazone enantiomers were baseline separated under conditions of 0.04 mmol/L beta-CD, 75 mmol/L NaH(2)PO(4) buffer at pH 4.0. A fused silica capillary (40 cm effective length x 75 microm ID) was used. The applied voltage and capillary temperature were 20 kV and 25 degrees C, respectively. Under these conditions, linear calibration curves were obtained in the 5-500 microg/ml range using UV detection at 280 nm. The limit of detection for both isomers was 0.1 microg/ml. The method was used for the analysis of different pharmaceutical preparations (dose) and biological samples containing cefoperazone.  相似文献   

19.
beta-Cyclodextrin dimers bearing an oxamido bis(2-benzoic) carboxyl linker (1) or its metal complexes (2 and 3) were newly synthesized, and their inclusion complexation behavior with a series of representative aliphatic oligopeptides, i.e., Leu-Gly, Gly-Leu, Gly-Pro, Glu-Glu, Gly-Gly, Gly-Gly-Gly, and Glu(Cys-Gly), was elucidated by means of UV/vis, circular dichroism, fluorescence, and 2D NMR spectroscopy in Tris-HCl buffer solution (pH 7.4) at 25 degrees C. The results obtained indicated that metallobridged bis(beta-cyclodextrin)s 2 or 3 could significantly enhance the original molecular binding abilities of parent bis(beta-cyclodextrin) 1 toward model substrates through the cooperative binding of two cyclodextrin moieties and the additional chelation effect supplied by the coordinated metal centers. It is interesting that hosts 2 and 3 displayed an entirely different fluorescence behavior upon complexation with guest oligopeptides. Among the guest peptides examined, 3 showed the highest complex formation constant of 68 200 M(-)(1) for Glu-Glu, up to 510-fold as compared with 1 (135 M(-)(1)), while 1 gave excellent molecular selectivity for Glu(Cys-Gly)/Glu-Glu pair, up to 51-fold. The molecular binding ability and selectivity were discussed from the viewpoints of the induced-fit and multiple recognition mechanism between host and guest.  相似文献   

20.
Neoglycoconjugates were prepared from mannan isolated from yeast Saccharomyces cerevisiae and activated by periodate oxidation to create aldehyde groups. Various degrees of oxidation introduced 11-28 aldehyde groups per mannan molecule and simultaneously resulted in a molar mass decrease from 46 to 44.5-31 kDa. The activated mannans were subsequently conjugated with bovine serum albumin forming neoglycoconjugates. Some parameters of these mannan-bovine serum albumin conjugates were characterized: saccharide content 25-30% w/w, molar mass within the range 169-246 kDa, and polydispersion (M(w)/M(n)) from 2.8 to 3.6. The interaction of these conjugates with lectin concanavalin A was studied using three different methods: (i) quantitative precipitation in solution; (ii) sorption to concanavalin A immobilized on bead cellulose; and (iii) kinetic measurement of the interaction by surface plasmon resonance. Quantitative precipitation assay showed only negligible differences in the precipitation course of original mannan and the corresponding mannan-bovine serum albumin conjugates. Both the sorption method (equilibrium method) and the surface plasmon resonance measurement (kinetic method) demonstrates that the values of dissociation constant K(D) of all synthetic neoglycoconjugates were within the range 10(-7) - 10(-8) mol x L(-1) (close to K(D) = 10(-8) mol x L(-1) determined by the sorption method for the original mannan). In conclusion, characterization of synthetic neoglycoconjugates confirmed that the method used for their preparation retained the ability of mannan moiety to interact with concanavalin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号