Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of
butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to
various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible
reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O. 相似文献
Sodium Nitroprusside (SNP) and S-Nitrosoglutathione (GSNO) differently affect mitochondrial H2O2 release at Complex-I. mM SNP increases while GSNO decreases the release induced by succinate alone or added on top of NAD-linked
substrates. Stimulation likely depends on Nitric Oxide (.NO) (released by SNP but not by GSNO) inhibiting cytochrome oxidase and mitochondrial respiration. Preincubations with SNP
or high GSNO (10 mM plus DTE to increases its .NO release) induces an inhibition of the succinate dependent H2O2 production consistent with a .NO dependent covalent modification. However maximal inhibition of the succinate dependent H2O2 release is obtained in the presence of low GSNO (20–100 μM), but not with SNP. This inhibition appears independent of .NO release since μM GSNO does not affect mitochondrial respiration, or the H2O2 detection systems and its effect is very rapid. Inhibition may be partly due to an increased removal of O2.− since GSNO chemically competes with NBT and cytochrome C in O2.− detection. 相似文献
Mitochondrial production of H2O2 is low with NAD substrates (glutamate/pyruvate, 3 and 2 mM) (G/P) and increases over ten times upon further addition of succinate,
with the formation of a sigmoidal curve (semimaximal value at 290 μM, maximal H2O2 production at 600 μM succinate). Malate counteracts rapidly the succinate induced increased H2O2 release and moves the succinate dependent H2O2 production curve to the right. Nitric oxide (NO) and carbon monoxide (CO) are cytochrome c oxidase inhibitors which increase
mitochondrial ROS production. Cyanide (CN−) was used to mimic NO and CO. In the presence of G/P and succinate (300 μM), CN− progressively increased the H2O2 release rate, starting at 1.5 μM. The succinate dependent H2O2 production curve was moved to the left by 30 μM CN−. The Vmax was little modified. We conclude that succinate is the controller of mitochondrial H2O2 production, modulated by malate and CN−. We propose that succinate promotes an interaction between Complex II and Complex I, which activates O2− production. 相似文献
A new metal complex, Fe(Sal2dienNO3·H2O) (where Sal is salicylaldehyde and dien is diethylenetriamine), has been synthesized and characterized. The interactions
between the Fe(III) complex and calf thymus DNA has been investigated using UV and fluorescence spectra, viscosity, thermal
denaturation, and molecular modeling. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis.
The experimental results show that the mode of binding of the complex to DNA is classical intercalation and the complex can
cleave pBR322 DNA. 相似文献
A novel S2O32? luminescent sensor (Cu2+-p-CPIP) was developed and the presence of S2O32? caused an obvious fluorescence enhancement at 420 nm upon excitation at 330 nm, which could be distinguished with the naked eye under a UV lamp. Remarkably, the compound exhibited excellent selective and sensitive response to S2O32? over other common anions with a micromolar limit of detection (0.442 μM) in DMSO/H2O (v/v, 1:1) buffer. The absorbance intensity and the color of Cu2+-p-CPIP solution changed gradually with the increase of S2O32? concentration. The proposed method was applied to the determination of S2O32? in milk samples and the recoveries were 97.5–105%. The preparation of Cu2+-p-CPIP exhibited the quick, simple and facile advantages. The results showed that Cu2+-p-CPIP can be a good candidate for simple, rapid and sensitive colorimetric detection of S2O32? in aqueous solution. 相似文献
Different subtypes of opioid receptors (OR) were activated in rats in vivo to study the activation effect on the heart’s resistance to ischemia and reperfusion. It has been established that administration of deltorphin II, a selective δ2-OR agonist, lowered the infarct size/area at risk index (IS/AAR) by 23%. Naltrexone, naloxone methiodide (an OR inhibitor not penetrating the blood-brain barrier (BBB)), and naltriben (δ2-antagonist) eliminated the cardioprotective effect of deltorphin II, while BNTX (a δ1-antagonist) produced no effect on the cardioprotective action of the δ2-agonist. The infarct-reducing effect of deltorphin II was eliminated by administration of chelerythrine (a protein kinase C (PKC) inhibitor), glibenclamide (a KATP-channels inhibitor), and 5-hydroxydecanoate (a mitochondrial KATP-channel blocker). Administration of other opioids did not reduce the IS/AAR index. It has been established that all the deltorphins manifest antiarrhythmic potency. Other opioids do not produce any effect on the incidence of arrhythmia occurrences. The antiarrhythmic effect of deltorphin II was eliminated by preliminary administration of naltrexone, naloxone methiodide, and naltriben, but BNTX did not affect the δ2-agonist’s anti-arrhythmic effect. The preliminary administration of chelerythrine, a PKC inhibitor, eliminated the δ2 agonist’s antiarrhythmic action. However, glibenclamide and 5-hydroxydecanoate did not alter the antiarrhythmic effect by deltorphin II. Therefore, activation of the peripheral δ2-ORs reduces the infarct size and prevents the onset of arrhythmias. The antiarrhythmic effect of the δ2-OR stimulation is mediated by activating PKC and opening the mitochondrial KATP-channels. PKC participates in the antiarrhythmic effect of the δ2-OR activation, but this effect does not depend on the condition of KATP-channels. 相似文献
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future. 相似文献
The dihydrated potassium salt of the complex anion [VO(O2)NTA]2− (NTA = nitrilotriacetate anion, [N(CH2-COO)3]3−) was thoroughly characterized by electronic and vibrational (infrared and Raman) spectroscopies. The bioactivity of the complex on the cell proliferation was tested on three cell lines in culture (UMR106 rat osteosarcoma-derived cells, Caco-2 derived from a human colon adenocarcinoma, and RAW 264.7, a macrophage murine cell line). 相似文献
The substitution reactions of H2GeLiF (G) with SiH3X (X = F, Cl, Br) were investigated using calculations performed at the QCISD/6-311++G (d, p)//B3LYP/6-311+G (d, p) level of theory. The results led to the following conclusions. (i) The substitutions are nucleophilic reactions. There are two substitution paths, I and II, which both lead to the germane H2GeFSiH3. The enantiomers of this germane are obtained via these two paths if an H in SiH3X is replaced with a different group or atom. (ii) Both substitution pathways show the same order of barrier heights (SiH3F > SiH3Cl > SiH3Br). The difference between the bond energies of Li–X and Si–X may explain the precedence among the substitution reactions of G with SiH3X. Path I has a lower activation barrier than path II, indicating that path I is more favorable. (iii) Comparison between the relevant insertion and substitution reactions shows that substitutions are more favorable and that the substitution product H2GeFSiH3 predominates over the insertion product. (iv) The substitution reactions of H2GeLiF with SiH3X are exothermic. 相似文献
This investigation generated rovibrational energies and spectroscopic constants for systems of CCl4 with Ng (Ng?=?He, Ne, Ar), O2, D2O and ND3 from scattering experimental data, and the results presented are of interest for microwave spectroscopy studies of small halogenated molecules. The rovibrational spectra were obtained through two different approaches (Dunham and DVR) within the improved Lennard Jones (ILJ) model. Spectra were also generated within ordinary Lennard Jones and deviations suggest that the ILJ model should be preferred due to interactions beyond dispersion forces presented in these systems. Data from the literature and additional high level quantum mechanical calculations presented in this work show that these systems should not be considered as van der Waals complexes due to halogen bonding (HB) interactions, and this is especially true for the CCl4–D2O and CCl4–ND3 complexes. The charge displacement from the latter systems are one order of magnitude higher than the values from literature for CCl4 and He, Ne, Ar and O2 systems, and show significant deviations between DFT and Hartree-Fock values not previously reported in the literature. 相似文献
Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H2O2)-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H2O2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H2O2. In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H2O2-induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H2O2-induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H2O2-induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress. 相似文献
Enzymes play a pivotal role in catalyzing diverse reactions. However, their instability upon repetitive/prolonged use, as
well as their inhibition by high substrates and product concentration, remains an area of concern. In this study, porcine
pancreatic α-amylase was immobilized on magnetic Fe2O3 nanoparticles (Fe2O3-NPs) in order to hydrolyze starch. The magnetic nanoparticle bound enzymes retained 94% of their initial enzyme activity.
X-ray diffraction and atomic force microscopy analyses showed that the prepared matrix had advantageous microenvironment and
a large surface area for binding significant amounts of protein. Functional groups present in enzyme and support were monitored
by Fourier transform infrared spectroscopy. Immobilized enzyme exhibited lowered pH optimum (pH 6.0) to a greater degree than
its soluble counterpart (pH 7.0). Optimum temperature for the immobilized enzyme shifted towards higher temperatures. The
immobilized enzyme was significantly more resistant to inactivation caused by various metal ions and chemical denaturants.
Immobilized α-amylase hydrolyzed 92% starch in a batch process, after 8 h at 40°C; while the free enzyme could hydrolyze only
73% starch under similar experimental conditions. A reusability experiment demonstrated that the immobilized enzyme retained
83% of its original activity even after its 8th repeated use. 相似文献
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
PROSTAGLANDIN (PG) F2αhas antifertility effects in many species1–3 but there are conflicting suggestions as to its mechanism of action. For example, it may cause the degeneration of the corpus luteum by decreasing blood flow in the uteroovarian vein4; alternatively, its action may be due to a hypersecretion of luteinizing hormone (LH) by the pituitary3,5. I have investigated the effects of PGF2α, E2 and E1 on pregnancy in mice and examined the mechanism of action of PGF2α. 相似文献
Subunit α of the Escherichia coli F1FO ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of α allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (Kd) of 1.6 μM of bound MgATP-ATTO-647N and 2.9 μM of MgADP-ATTO-647N have been determined from fluorescence correlation spectroscopy data. A concentration of 51 μM and 55 μM of NBD-Cl dropped the MgATP-ATTO-647N and MgADP-ATTO-647N binding capacity to 50% (IC50), respectively. In contrast, no effect was observed in the presence of N,N′-dicyclohexylcarbodiimide. As subunit α is the homologue of subunit B of the A1AO ATP synthase, the interaction of NBD-Cl with B of the A-ATP synthase from Methanosarcina mazei Gö1 has also been shown. The data reveal a reduction of nucleotide-binding of B due to NBD-Cl, resulting in IC50 values of 41 μM and 42 μM for MgATP-ATTO-647N and MgADP-ATTO-647N, respectively. 相似文献
Progressive microwave power saturation (P1/2) measurements have been performed on the tyrosine D radical (YD•) of photosystem II (PSII) in order to examine its relaxation enhancement by the oxygen-evolving complex (OEC) poised to the
reduced S−1 and S−2 oxidation states by NO treatment. Analysis of the power saturation curves showed that the S−1 oxidation state of the OEC does not enhance the relaxation of YD•: it therefore possesses a diamagnetic ground state. In contrast, the Mn(II)-Mn(III) multiline electron paramagnetic resonance
(EPR) signal characteristic of the S−2 oxidation state of the OEC was shown to provide a relaxation enhancement pathway for YD•, however less efficient relative to the one provided by the S2-state multiline EPR signal. We also examined the YD• relaxation enhancement characteristics of the EPR-silent oxidation state produced after brief (1–5 min) dark incubation at
0°C of a PSII sample poised to the EPRactive S−2 state. This EPR-silent oxidation state denoted as “0°C incubation” state was shown to possess remarkably similar P1/2 values with the EPR-active S−2 state in the overall examined temperature range (6–20 K). In addition, these values remained unchanged after successive cycles
of the OEC between the EPR-active S−2 state and the “0°C incubation” state. The data presented in this work point to the conclusion that the “0°C incubation” state
is indeed an S−2 oxidation state with half-integer spin. 相似文献
The oxidation of CO catalyzed by clusters of Au11, Au10Pt and Au9Pt2 was investigated using the M06 functional suite of the density functional theory. Au and Pt atoms were described with the double-ζ valence basis set Los Alamos National Laboratory 2-double-z (LanL2DZ), whereas the standard 6-311++G(d,p) basis set was employed for the C and O atoms. Our theoretical model showed that (1) after coordination to Au and Au-Pt cluster, O2 and CO are apparently activated, and Mulliken charges show that the gold atoms in the active sites of Au11 are negatively charged; (2) Au-Pt clusters with 11 atoms can effectively catalyze the oxidation of CO by O2; (3) Au11 exhibits good catalytic performance for the oxidation of CO; (4) oxidation of CO occurs preferably on the Au–Pt active sites in Pt-doped clusters, and the single-center mechanisms are more favorable energetically than the two-center mechanisms; (5) after adsorption, an O2 molecule oxidates two CO molecules via stepwise mechanisms; and (6) the catalytic processes are highly exothermic. 相似文献
Using light microscopy and spectrophotometry, it has been shown that amyloid β-peptide Aβ25–35 and water-soluble fullerene C60 cause lysis of human and rat erythrocytes. Both fullerene C60 and Aβ25–35 partly inhibited the activities of membrane-associated phosphofructokinase and cytoplasmic lactate dehydrogenase in erythrocytes. 相似文献
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion. 相似文献
The effect of the β-amyloid peptide Aβ25–35 and fullerene C60 on the activity of the cytoplasmic enzymes lactate dehydrogenase (LDH) and glutathione peroxidase (GLP), and membrane-bound phosphofructokinase (PFK) and Na+,K+-ATPase in human erythrocytes has been studied. When used in combination, the cytotoxins decrease the activity of LDH and PFK in a nonadditive manner; in this case, Aβ25–35 protects PFK against the inhibitory effect of C60. The activity of LDH, GLP, and PFK decreases within the first 2–20 min of incubation of erythrocytes with Aβ25–35 in the absence of glucose. The addition of glucose sharply decreases the inhibitory action of Aβ25–35 on LDH and GLP but does not affect the fourfold decrease in activity of PFK; the activity of membrane-bound Na+,K+-ATPase does not depend on the presence of glucose. Possible mechanisms of interaction of Aβ25–35 and fullerene C60 with the erythrocyte membrane and enzymes are discussed. 相似文献