首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human pregnane X receptor (PXR) recognizes a range of structurally and chemically distinct ligands and plays a key role in regulating the expression of protective gene products involved in the metabolism and excretion of potentially harmful compounds. The identification and development of PXR antagonists is desirable as a potential way to control the up-regulation of drug metabolism pathways during the therapeutic treatment of disease. We present the 2.8A resolution crystal structure of the PXR ligand binding domain (LBD) in complex with T0901317 (T1317), which is also an agonist of another member of the orphan class of the nuclear receptor superfamily, the liver X receptor (LXR). In spite of differences in the size and shape of the receptors' ligand binding pockets, key interactions with this ligand are conserved between human PXR and human LXR. Based on the PXR-T1317 structure, analogues of T1317 were generated with the goal of designing an PXR antagonist effective via the receptor's ligand binding pocket. We find that selectivity in activating PXR versus LXR was achieved; such compounds may be useful in addressing neurodegenerative diseases like Niemann-Pick C. We were not successful, however, in producing a PXR antagonist. Based on these observations, we conclude that the generation of PXR antagonists targeted to the ligand binding pocket may be difficult due to the promiscuity and structural conformability of this xenobiotic sensor.  相似文献   

2.
3.
4.
5.
Microtubule affinity-regulating kinase 4 (MARK4) has recently been identified as a potential drug target for several complex diseases including cancer, diabetes and neurodegenerative disorders. Inhibition of MARK4 activity is an appealing therapeutic option to treat such diseases. Here, we have performed structure-based virtual high-throughput screening of 100,000 naturally occurring compounds from ZINC database against MARK4 to find its potential inhibitors. The resulted hits were selected, based on the binding affinities, docking scores and selectivity. Further, binding energy calculation, Lipinski filtration and ADMET prediction were carried out to find safe and better hits against MARK4. Best 10 compounds bearing high specificity and binding efficiency were selected, and their binding pattern to MARK4 was analyzed in detail. Finally, 100 ns molecular dynamics simulation was performed to evaluate; the dynamics stability of MARK4-compound complex. In conclusion, these selected natural compounds from ZINC database might be potential leads against MARK4, and can further be exploited in drug design and development for associated diseases.  相似文献   

6.

Background

Liver X receptor (LXR) α and LXR β (NR1H3 and NR1H2) are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they express LXR α and β and respond to LXR agonist stimulation in vitro. The aim of our study was to identify cell surface markers of LXR agonists on monocytes. For this, we focused on clusters of differentiation (CD) markers because they are well characterized and accessible cell surface molecules allowing easy immuno-phenotyping.

Methodology/Principal Findings

By using microarray analysis of monocytes treated or not with an LXR agonist in vitro, we selected three CD, i.e. CD82, CD226, CD244 for further analysis by real time PCR and flow cytometry. The three CD were up-regulated by LXR agonist treatment in vitro in a time- and dose- dependent manner and this induction was LXR specific as assessed by a SiRNA or LXR antagonist strategy. By using flow cytometry, we could demonstrate that the expression of these molecules at the cell surface of monocytes was significantly increased after LXR agonist treatment.

Conclusions/Significance

We have identified three new cell surface markers that could be useful to monitor LXR activation. Future studies will be required to confirm the biological and diagnostic significance of the markers.  相似文献   

7.
The human epidermal growth factor (HER2) is a transmembrane receptor that is highly expressed in breast cancer and in different other cancers. Therefore, it is of interest to identify the new HER2 inhibitors from a selected 300 compounds in the ZINC database. The top two hit compounds (ZINC000014780728 (-11.0 kcal/mol) and ZINC000014762512 (-10.8 kcal/mol)) showed a high affinity with HER2 relative to the reference compound (lapatinib (-10.2 kcal/mol)) for further consideration.  相似文献   

8.
Liver X receptors (LXRs) are involved in various diseases associated with lipid disorders, and in regulating cancer cell proliferation. However, the underlying molecular mechanisms, especially those in gastric cancer (GC) remain to be clarified. In this study, immunohistochemistry analysis revealed that LXRβ was mainly expressed in GC tissue, with less expression in adjacent normal tissues. The LXRβ agonist T0901317 efficiently suppressed the proliferation and colony formation of various GC cell lines. We further showed that LXRβ translocated from the cytoplasm to the nucleus when activated by T0901317. LXRβ nuclear localization suppressed the activation of Wnt signalling and decreased the expression of target genes such as MYC, BMP4, and MMP7 through binding to their promoters. Moreover, we demonstrated that the LXR agonist efficiently suppressed GC tumour growth in a nude mouse xenograft model. Taken together, these results revealed that LXRβ agonist inhibited GC cells proliferation by suppressing Wnt signalling via LXRβ relocalization. The results strongly suggest that LXRβ could be a promising target in GC therapy.  相似文献   

9.
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (?11.6 to ?10.0?kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
Mitro N  Vargas L  Romeo R  Koder A  Saez E 《FEBS letters》2007,581(9):1721-1726
The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Insight into the physiologic roles of the LXRs has been greatly facilitated by the discovery of potent synthetic agonists. Here we show that one of these compounds, T0901317, is also a high-affinity ligand for the xenobiotic receptor pregnane X receptor (PXR). T0901317 binds and activates PXR with the same nanomolar potency with which it stimulates LXR activity. T0901317 induces expression not only of LXR target genes, but also of PXR target genes in cells and animals, including the scavenger receptor CD36, a property not shared by more specific LXR ligands, such as GW3965. Activation of PXR targets may explain why T0901317 induces dramatic liver steatosis, while GW3965 has a milder effect. These results suggest that many of the biological activities heretofore associated with LXR activation may be mediated by PXR, not LXR. Since T0901317 has been widely used in animals to study LXR function, the in vivo effects of this compound ascribed to LXR activation should be re-examined.  相似文献   

11.
12.
Human (h) airway smooth muscle (ASM) cells are important mediators of the inflammatory process observed in asthma and other respiratory diseases. We show here that primary hASM cells express liver X receptor (LXR; alpha and beta subtypes), an oxysterol-activated nuclear receptor that controls expression of genes involved in lipid and cholesterol homeostasis, and inflammation. LXR was functional as determined by transient assays using LXR-responsive reporter genes and by analysis of mRNA and protein expression of endogenous LXR target genes in cells exposed to LXR agonists. LXR activation induced expression of the ATP-binding cassette transporters ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein AI and high-density lipoprotein acceptors, pointing to a role for hASM cells in modulating cholesterol homeostasis in the airway. Under inflammatory conditions, hASM cells release a variety of chemokines and cytokines that contribute to inflammatory airway diseases. Activation of LXR inhibited the expression of multiple cytokines in response to proinflammatory mediators and blocked the release of both granulocyte macrophage colony-stimulating factor and granulocyte colony stimulating factor. LXR activation also inhibited proliferation of hASM cells and migration toward platelet-derived growth factor chemoattractant, two important processes that contribute to airway remodeling. Our findings reveal biological roles for LXR in ASM cells and suggest that modulation of LXR activity offers prospects for new therapeutic approaches in the treatment of asthma and other inflammatory respiratory diseases.  相似文献   

13.
14.
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that can infect a wide range of warm-blooded animals including humans. In humans and other intermediate hosts, toxoplasma develops into chronic infection that cannot be eliminated by host's immune response or by currently used drugs. In most cases, chronic infections are largely asymptomatic unless the host becomes immune compromised. Thus, toxoplasma is a global health problem and the situation has become more precarious due to the advent of HIV infections and poor toleration of drugs used to treat toxoplasma infection, having severe side effects and also resistance have been developed to the current generation of drugs. The emergence of these drug resistant varieties of T. gondii has led to a search for novel drug targets. We have performed a comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen T. gondii. The enzymes in the unique pathways of T. gondii, which do not show similarity to any protein from the host, represent attractive potential drug targets. We have listed out 11 such potential drug targets which are playing some important work in more than one pathway. Out of these, one important target is Glutamate dehydrogenase enzyme; it plays crucial part in oxidation reduction, metabolic process and amino acid metabolic process. As this is also present in the targets of tropical diseases of TDR (Tropical disease related Drug) target database and no PDB and MODBASE 3D structural model is available, homology models for Glutamate dehydrogenase enzyme were generated using MODELLER9v6. The model was further explored for the molecular dynamics simulation study with GROMACS, virtual screening and docking studies with suitable inhibitors against the NCI diversity subset molecules from ZINC database, by using AutoDock-Vina. The best ten docking solutions were selected (ZINC01690699, ZINC17465979, ZINC17465983, ZINC18141294_03, ZINC05462670, ZINC01572309, ZINC18055497_01, ZINC18141294, ZINC05462674 and ZINC13152284_01). Further the Complexes were analyzed through LIGPLOT. On the basis of Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds, specifically ZINC01690699 (as it has minimum energy score and one of the highest number of interactions with the active site residue), could be promising inhibitors for T. gondii using Glutamate dehydrogenase as Drug target.  相似文献   

15.
16.
Receptor for advanced glycation end products (RAGE), a member of the immunoglobulin family, interactions with its ligands trigger downstream signaling and induce an inflammatory response linked to diabetes, inflammation, carcinogenesis, cardiovascular disease, and a variety of other human disorders. The interaction of RAGE and S100A6 has been associated with a variety of malignancies. For the control of RAGE-related illnesses, there is a great demand for more specialized drug options. To identify the most effective target for combating human malignancies associated with RAGE-S100A6 complex, we conducted single and differential gene expression analyses of S100A6 and RAGE, comparing normal and malignant tissues. Further, a structure-based virtual screening was conducted using the ZINC15 database. The chosen compounds were then subjected to a molecular docking investigation on the RAGE active site region, recognized by the various cancer-related RAGE ligands. An optimized RAGE structure was screened against a library of drug-like molecules. The screening results suggested that three promising compounds were presented as the top acceptable drug-like molecules with a high binding affinity at the RAGE V-domain catalytic region. We depicted that these compounds may be potential RAGE inhibitors and could be used to produce a successful medication against human cancer and other RAGE-related diseases based on their various assorted parameters, binding energy, hydrogen bonding, ADMET characteristics, etc. MD simulation on a time scale of 50 ns was used to test the stability of the RAGE-inhibitor complexes. Therefore, targeting RAGE and its ligands using these drug-like molecules may be an effective therapeutic approach.  相似文献   

17.
The shikimate pathway is as an attractive target because it is present in bacteria, algae, fungi, and plants but does not occur in mammals. In Mycobacterium tuberculosis (MTB), the shikimate pathway is integral to the biosynthesis of naphthoquinones, menaquinones, and mycobactin. In these study, novel inhibitors of 3-dehydroquinate synthase (DHQS), an enzyme that catalyzes the second step of the shikimate pathway in MTB, were determined. 12,165 compounds were selected from two public databases through virtual screening and molecular docking analysis using PyRx 8.0 and Autodock 4.2, respectively. A total of 18 compounds with the best binding energies (?13.23 to ?8.22 kcal/mol) were then selected and screened for absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, and nine of those compounds were found to satisfy all of the ADME and toxicity criteria. Among those nine, the three compounds—ZINC633887?(binding energy =??10.29 kcal/mol), ZINC08983432?(?9.34 kcal/mol), and PubChem73393?(?8.61 kcal/mol)—with the best binding energies were further selected for molecular dynamics (MD) simulation analysis. The results of the 50-ns MD simulations showed that the two compounds ZINC633887 and PubChem73393 formed stable complexes with DHQS and that the structures of those two ligands remained largely unchanged at the ligand-binding site during the simulations. These two compounds identified through docking and MD simulation are potential candidates for the treatment of TB, and should undergo validation in vivo and in vitro.  相似文献   

18.
Synthetic LXR agonists increase LDL in CETP species   总被引:4,自引:0,他引:4  
Liver X receptor (LXR) nuclear receptors regulate the expression of genes involved in whole body cholesterol trafficking, including absorption, excretion, catabolism, and cellular efflux, and possess both anti-inflammatory and antidiabetic actions. Accordingly, LXR is considered an appealing drug target for multiple indications. Synthetic LXR agonists demonstrated inhibition of atherosclerosis progression in murine genetic models; however, these and other studies indicated that their major undesired side effect is an increase of plasma and hepatic triglycerides. A significant impediment to extrapolating results with LXR agonists from mouse to humans is the absence in mice of cholesteryl ester transfer protein, a known LXR target gene, and the upregulation in mice but not humans of cholesterol 7alpha-hydroxylase. To better predict the human response to LXR agonism, two synthetic LXR agonists were examined in hamsters and cynomolgus monkeys. In contrast to previously published results in mice, neither LXR agonist increased HDL-cholesterol in hamsters, and similar results were obtained in cynomolgus monkeys. Importantly, in both species, LXR agonists increased LDL-cholesterol, an unfavorable effect not apparent from earlier murine studies. These results reveal additional problems associated with current synthetic LXR agonists and emphasize the importance of profiling compounds in preclinical species with a more human-like LXR response and lipoprotein metabolism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号