首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO2 surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.  相似文献   

2.
The geometrical, conformational, and electronic properties of a series of D–π–A metal-free dyes designed for use as sensitizers in DSSCs were studied using DFT and TD-DFT methods. A substituted triphenylamine moiety was used as the donor group and 2-cyanoacrylic acid as the acceptor group in these dyes. They also contained conjugated bridging π-linker groups containing two or more thiophene rings to enhance the intramolecular charge transfer. The B3LYP, M06-HF, ωB97XD and CAM-B3LYP functionals were utilized in combination with the 6-31G(d,p) basis set for the calculations. The dye solvation process was taken into account via the polarizable continuum model. To rationalize the relationships between dye structure and the photochemical properties of the dyes when used as sensitizers in DSSCs, the vertical excitation energies, the light-harvesting efficiencies, the free-energy changes during the process of injecting an electron into the surface of a TiO2 nanocrystalline semiconductor, and the open-circuit potentials were calculated for all of the dyes in the solvent THF using the above methods. The results of these computations are discussed and compared with the available corresponding experimental data.  相似文献   

3.
Strong electron‐donating functionality is desirable for many organic donor‐π‐bridge‐acceptor (D‐π‐A) dyes. Strategies for increasing the electron‐donating strength of common nitrogen‐based donors include planarization of nitrogen substituents and the use of low resonance‐stabilized energy aromatic ring‐substituted nitrogen atoms. Organic donor motifs based on the planar nitrogen containing heterocycle indolizine are synthesized and incorporated into dye‐sensitized solar cell (DSC) sensitizers. Resonance active substitutions at several positions on indolizine in conjugation with the D‐π‐A π‐system are examined computationally and experimentally. The indolizine‐based donors are observed to contribute electron density with strengths greater than triarylamines and diarylamines, as evidenced by UV/Vis, IR absorptions, and oxidation potential measurements. Fluorescence lifetime studies in solution and on TiO2 yield insights in understanding the performance of indolizine‐based dyes in DSC devices.  相似文献   

4.
In light of the performance of the SD2 pigments in DSSC, in order to expand the absorption spectral scope, decrease the energy difference between the highest occupied and the lowest unoccupied molecular orbitals, with SD2 dye molecular electron donor and electron acceptor as the fundamental framework, the indole fragment and thiophene derivative in the prototype dye molecule were replaced by the two π-bridges (labeled PA, PB, respectively) and the four auxiliary electron acceptors (labeled A1, A2, A3, A4, respectively). For the sake of characterizing dye molecules as thoroughly as possible in DSSC, the frontier orbital energy levels, ultraviolet absorption spectra, natural bond orbital analysis, intramolecular charge transfer, charge and hole reorganization energies, parameters influencing the short-circuit current density and the open-circuit photovoltage for these eight individual dye molecules are carried out to try to fully characterize the properties of these dye molecules. According to these computational results of physical quantities and based on the performance of these dye molecules in the above aspects, in this paper, six free molecular models were picked out to combine with titanium dioxide cluster to calculate their geometrical structures, frontier orbital distributions, electron excitation energies, ultraviolet absorption spectra and the composition of the electronic transitions in chloroform solvent with polarizable continuum model. The results of these calculations show that the PA-A2 and PB-A4 dye molecule has better properties in electron transfer and spectral absorption range before and after the adsorption on the titanium dioxide.  相似文献   

5.
Zinc tetraphenylporphyrin (ZnTPP) was modified by a push-pull strategy and then density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed for the resulting derivatives. The smallest HOMO-LUMO energy gaps were found in ZnTPP-6 and ZnTPP-7, which had nitro substituents and a conjugated chain, while the largest was observed for ZnTPP-5. The energy gaps of all of the systems designed in this work were smaller than that of ZnTPP. Clear intramolecular charge transfer was observed from donor to acceptor in ZnTPP-6 and ZnTPP-7, which had nitro groups at positions R8, R9, and R10, as well as in ZnTPP-3 and ZnTPP-4, which had cyano groups at those positions. The narrow band gaps (compared to that of ZnTPP) of these designed systems, where the LUMO is above the conduction band of TiO(2) and the HOMO is below the redox couple, indicate that they are efficient sensitizers. The B bands of these newly designed derivatives, except for ZnTPP-5, are redshifted compared with the B band of ZnTPP.  相似文献   

6.
Based on a prototype sensitizer W2, we designed triarylamine-based p-type sensitizers W2-1 to W2-7 that contain modified π-spacers (π'), a π-spacer and two anchors. For W2-1 to W2-4, instead of 2,1,3-benzothiadiazole in W2, thieno[3,4-b]-1,4-dioxin, thiophene, thieno[3,4-c][1,2,5]thiadizole, thiazolo[5,4-d]thiazole are π' and thiophene as π-spacer. For W2-5 to W2-8, π' and π are same, with 2,1,3-benzothiadiazole, thieno[3,4-b]-1,4-dioxin, thieno[3,4-c][1,2,5]thiadiazo, thiazolo[5,4-d]thiazole, respectively, as the π'-spacers. Structure optimization, electronic level and absorption characters were calculated with density functional theory (DFT) and time-dependent DFT (TDDFT) at the CAM-B3LYP/6-311G (d,p). The solvent effect was involved using a polarized continuum model in chloroform. The results showed that the highest occupied molecular orbital and the lowest unoccupied molecular orbital guarantee sufficient hole injection (lower than –0.2 eV), and dye regeneration (lower than –0.2 eV). W2-4 has higher light-harvesting efficiency (LHE) (0.994) and larger overlap with the visible light from 400 nm to 600 nm. Finally, the results suggest that the driving force of hole injection, dye regeneration and charge recombination (ΔGinj, ΔGreg and ΔGCR) of W2-4 are the best, with more negative ΔGinj (–4.33), ΔGreg (–1.74) and more positive ΔGCR (1.92). Replacing 2,1,3-benzothiadiazole with thiazolo[5,4-d]thiazole as π'-spacers is a effective way to improve the performance of the dyes. An introduction of thiazolo[5,4-d]thiazole group can improve the absorption ability and hinder charge recombination.
Graphical abstract Absorption spectra of p-type D-π-A sensitizers with modified π-spacers
  相似文献   

7.
The metal-free organic dye sensitizer 2,3′-diamino-4,4′-stilbenedicarboxylic acid has been investigated for the first time for dye-sensitized solar cell applications. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations (performed using the hybrid functional B3LYP) were carried out to analyze the geometry, electronic structure, polarizability, and hyperpolarizability of 2,3′-diamino-4,4′-stilbenedicarboxylic acid used as a dye sensitizer. A TiO2 cluster was used as a model semiconductor when attempting to determine the conversion efficiency of the selected dye sensitizer. Our TD-DFT calculations demonstrated that the twenty lowest-energy excited states of 2,3′-diamino-4,4′-stilbenedicarboxylic acid are due to photoinduced electron-transfer processes. Moreover, interfacial electron transfer between a TiO2 semiconductor electrode and the dye sensitizer occurs through electron injection from the excited dye to the semiconductor’s conduction band. Results reveal that metal-free 2,3′-diamino-4,4′-stilbenedicarboxylic acid is a simple and efficient sensitizer for dye-sensitized solar cell applications.  相似文献   

8.
A novel approach for enhancing the performance of dye‐sensitized solar cells is presented. It is based on the analysis of five sensitizers by utilizing triarylamine as donor, thiophene benzothiadiazole as chromophore and substituted thienyl linked with cyanoacrylic acid as the anchoring group (LI‐80‐LI‐84). Accompanied with the increasing steric hindrance of the substituents on the thienyl isolation group, the conformation of the dyes, in particular the angle between the chromophore and the anchoring group, becomes more and more twisted. Surprisingly, sensitizers with poorer conjugation effects (the higher twisted conformation) achieve better photovoltaic performances, showing a contrary trend to the traditional donor‐(π‐spacer)‐acceptor dyes with a better co‐planarity. On the basis of the preceding fundamental comprehensions, an empirical method is successfully applied to a new phenyl‐based system (LI‐85 and LI‐86) to improve their performances. The systematical investigation indicates that the twisted structures can contribute to the ECB of the TiO2 film, electron lifetime and resistance at the TiO2/dye/electrolyte interface. Thereby, the efficiency of the initial LI‐80‐based cell has been dramatically improved to 2.45 times higher for LI‐86‐based cell, paving a new way for the design of better sensitizers with higher device performances.  相似文献   

9.
We report the design, synthesis and photophysical properties of highly solvatochromic donor/acceptor substituted naphthalimide based fluorophores. The synthesized naphthalimides containing propargyl ends showed highly solvatochromic intramolecular charge transfer (ICT) feature as was revealed from the UV–visible, fluorescence photophysical properties of these fluorophores and DFT/TDDFT calculation. Fluorescence life times for the imide fluorophores were also measured in different solvents. The solid state photophysical property of donor substituted naphthalimide 1 showed promising for future application in material sciences. Furthermore, both the donor/acceptor substituted naphthalimide fluorophores 12 were exploited in sensing calf-thymus DNA via switch-on fluorescence response. The propargyl linker containing naphthalimides can further be exploited for the synthesis of labeled biomolecular building blocks.  相似文献   

10.
The elongation of π‐conjugated bridges between the donor (D) and the acceptor (A) represents a feasible strategy towards enhancement of light‐harvesting in both breadth and depth of organic D‐π‐A dyes suitable for nanocrystalline TiO2‐based dye‐sensitized solar cells (DSSCs). Here, a series of organic dyes with elongating conjugated bridges is synthesized and characterized. DSSC devices employing a cobalt (II/III) redox electrolyte are fabricated using these dyes as light‐harvesting sensitizers. Compared to a dye with the 3,4‐ethylenedioxythiophene (EDOT) linker ( G188 ), the three counterparts with further extended π‐bridges present gradually red‐shifted electronic absorption spectra and a persistent decrease in oxidation potential. The photocurrent action spectra show that the extension of π‐conjugated bridges decreases the open‐circuit photovoltage. The best performance is shown in G268 with a short‐circuit photocurrent density (Jsc) of 16.27 mA cm2, an open‐circuit photovoltage (Voc) of 0.83 V, and a fill factor (FF) of 0.67, corresponding to an overall conversion efficiency of 9.24%. Unexpectedly, G270, which has with the longest π‐bridge , showed the lowest Jsc, Voc, and efficiency.  相似文献   

11.
Organic material with high intensity of two-photon absorption (TPA) induced fluorescence can be used as the frequency up-converter materials for improving efficiency of the solar cells. In this work, the organic molecular structures were designed by symmetrically grafting two elongated conjugated linkers on a conjugated core and then adding donor groups at both terminals. Fluorene derivatives as a core acceptor, phenylethynyl as the conjugated linker and diphenylamino or methyl-9H-carbozole as the donor end groups were selected. Quantum mechanical modeling techniques were applied to investigate the molecular electronic structure and properties. Absorption properties of these novel π-conjugated organic molecules were studied. The TPA cross-sections of these derivatives were calculated using few-states models, respectively. The effects of donor and acceptor groups on the TPA behaviors of these designed molecules were investigated. The up-conversion efficiency of designed molecules was also calculated.  相似文献   

12.
The geometries, electronic structures, polarizabilities, and hyperpolarizabilities of organic dye sensitizer 4-Methylphthalonitrile was studied based on Hartree-Fock (HF) and density functional theory (DFT) using the hybrid functional B3LYP. Ultraviolet-visible (UV-Vis) spectrum was investigated by time dependent-density functional theory (TD-DFT). Features of the electronic absorption spectrum in the visible and near-UV regions were assigned based on TD-DFT calculations. The absorption bands are assigned to π → π* transitions. Calculated results suggest that three lowest energy excited states of 4-Methylphthalonitrile are due to photo induced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer 4-Methylphthalonitrile is due to an electron injection process from excited dye to the semiconductor’s conduction band. The role of cyanine and methyl group in 4-Methylphthalonitrile in geometries, electronic structures, and spectral properties were analyzed.  相似文献   

13.
Zn(II)–porphyrin sensitizers, coded as SGT‐020 and SGT‐021 , are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer‐based dye‐sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure–performance relationship in the platform of porphyrin‐triple bond‐benzothiadiazole‐acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315 , the power conversion efficiency (PCE) is enhanced with the increased short‐circuit current (Jsc) and open‐circuit voltage (Voc), due to the improved light‐harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT‐021 , whose PCE is much higher than the 11.70% PCE for SM315 . To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high Voc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon‐to‐current efficiency is achieved for solar water splitting.  相似文献   

14.
Dye molecules with various fluorescent wavelengths are widely used for diagnostic and optical imaging applications. Accordingly, there is a constant demand for fluorogenic dyes with new properties. We have recently developed a novel strategy for the design of long-wavelength fluorescent dyes with a turn-ON option. The design is based on a donor-two-acceptor π-electron system that can undergo an internal charge transfer to form a new fluorochrome with an extended π-conjugated system. Here, we describe a series of such dyes based on two novel latent donors, naphthol and hydroxycoumarin. One of the dyes has showed excellent near-infrared fluorescent characteristics and specifically was demonstrated as a mitochondrial imaging reagent in live cells. This unique strategy for fluorogenic dye design has opened new doors for further near-infrared fluorescence probe discovery.  相似文献   

15.
Three new thieno[3,2‐b][1]benzothiophene ( TBT )‐based donor–π–acceptor (D–π–A) sensitizers, coded as SGT ‐ 121 , SGT ‐ 129 , and SGT ‐ 130 , have been designed and synthesized for dye‐sensitized solar cells (DSSCs), for the first time. The TBT , prepared by fusing thiophene unit with the phenyl unit of triphenylamine donor, is utilized as the π‐bridge for all sensitizers with good planarity. They have been molecularly engineered to regulate the highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) energy levels and extend absorption range as well as to control the electron‐transfer process that can ensure efficient dye regeneration and prevent undesired electron recombination. The photovoltaic performance of SGT‐sensitizer‐based DSSCs employing Co(bpy)32+/3+ (bpy = 2,2′‐bipyridine) redox couple is systematically evaluated in a thorough comparison with Y123 as a reference sensitizer. Among them, SGT ‐ 130 with benzothiadiazole‐phenyl ( BTD ‐ P ) unit as an auxiliary acceptor exhibits the highest power‐conversion efficiency (PCE) of 10.47% with Jsc = 16.77 mA cm?2, Voc = 851 mV, and FF = 73.34%, whose PCE is much higher than that of Y123 (9.5%). It is demonstrated that the molecular combination of each fragment in D–π–A organic sensitizers can be a pivotal factor for achieving the higher PCEs and an innovative strategy for strengthening the drawbacks of the π‐bridge.  相似文献   

16.
Preparation, characterization and structural properties of a novel bis-phosphaalkenyl based PNP-pincer are reported. In this pincer the π-system is delocalized over all three donor sites, which was demonstrated with DFT calculations, UV-Vis measurements and structural findings. As a consequence of this extended delocalization the π-system reveals near coplanarity which is evident from the first crystal structure for an uncomplexed bisphosphaalkenyl PNP-pincer.  相似文献   

17.
Donor–acceptor (D–A) copolymers have been proved to be excellent candidates for efficient polymer solar cells. In this paper, a series of D–A polymers with the same donor unit of Si4T and different acceptor units are theoretically designed. Two novel strategies (extending the length of π-conjugation and using the electron-deficient groups) have been considered for the conjugated polymer design. The energy levels and band gaps are theoretically investigated using the confirmed density functional theory/time-dependent density functional theory method. The results show that, compared with two original polymers, the newly designed D–A polymers have better predicted performances with smaller band gaps and lower highest occupied molecular orbital energy levels. When combined with fullerene derivatives (PCBM) for organic solar cells, these polymers can produce power conversion efficiencies as high as ~10%, estimated by Scharber diagrams.  相似文献   

18.
The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV–visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO–LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor–acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor–acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide–protein interaction.  相似文献   

19.
Phenylethynylchromones bearing different donor groups at the phenyl moiety have been prepared and their photophysical and electrogenerated chemiluminescence (ECL) properties have been studied with respect to their structural features. Intriguingly, the presence and variation of donor groups do not much influence the absorption spectra, which can be compared with the spectrum of unsubstituted chromone, whereas the photoluminescence (PL) spectra show pronounced changes. Density functional theory (DFT) calculations indicate enhancement of HOMO energy levels upon increasing the donor strength. The photophysical properties have also been studied in various solvents, and the PL spectra in particular show the anticipated trend. The introduction of pi-extension imparts ECL to the new molecules and the electronic coupling between the donor and the acceptor moieties through C-C triple bond influences ECL emission maxima. Weaker donors impart excimer ECL while stronger donors impart monomeric intramolecular charge transfer (ICT) ECL.  相似文献   

20.
The electronic structures, absorption spectra and photovoltaic (PV) performance of four dyes based on triphenylamine and polyoxometalate (POM) organic–inorganic hybrids for p-type dye-sensitised solar cells have been discussed by density functional theory (DFT) and time-dependent DFT calculations. In the four designed dyes, the triarylamine and carbazole take the role of the electron donor and the POMs act as the electron acceptor. It was found that introduction of electron donating groups (diphenylamine group and carbazole) into the triarylamine unit enabled better PV performance. This work is expected to be helpful for designing triarylamine–POM hybrid dyes with target properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号