首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch culturing experiments were conducted to examine effects on Macrocystis pyrifera (L.) C. A. Agardh gametophytic growth of various iron and zinc concentrations in the chemically defined, artificial seawater medium, Aquil. A least squares fit of experimental data represented the relative importance of these micronutrient effects. Optimal iron and zinc concentrations in Aquil were estimated at 340 nM (7 × 10?11 nM as [Fe3+]) and 135 nM (6 × 10?2 nM as [Zn2+]), respectively.  相似文献   

2.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters, identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the  相似文献   

3.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters,identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.  相似文献   

4.
Different chemical methods have been developed to evaluate the bioavailable fraction of the trace metals. Due to the lack of a universal method for analysis of the bioavailable metal fractions, due to the differences in sediment characteristics, it is necessary to validate an appropriate chemical method for assessing the available fraction of trace metals. For this propose, in this study, different chemical extraction methods including extraction with HCl and desorption test as a single reagent leaching test as well as geochemical fractions method have been evaluated. Bushehr coastal sediments in the Persian Gulf coasts have been selected for this purpose. To validate the efficacy of these methods, a gastropod species (Trochus erithreus), as a bioindicator, has been selected and monitored for trace metals of Fe2+, Pb2+, Cu2+, Zn2+, Mn2+, and Ni2+. According to the one-way ANOVA results, all partial extraction methods for all the trace metals (except for Mn2+) showed no significant variation, but linear correlation coefficients were between the results of the selective chemical extraction methods and concentrations of trace metals in organism tissues. It offered that selective extraction with HCl can be used as a simple method for measuring the bioavailable fraction of the metals in the sediments.  相似文献   

5.
1. General principles governing trace metal uptake and accumulation in marine invertebrates are identified.2. Key determinants of trace metal body concentrations are bioavailability from seawater and from food. However, the nature of the trace metal (essential vs non-essential, chemical properties, etc.) and the physiological state of the organism, strongly influence subsequent handling, distribution, tissue accumulation and excretion.3. The roles of metal-binding proteins (metallothioneins, transferrin-like proteins, etc.) and haemolymph cellular elements in metal transport and storage are described.4. Uptake of many trace metals from seawater generally conforms to Fick's Law of Diffusion, but is also influenced by non-specific binding to ligands in body fluids and cells, potential differences across body surfaces and, in some instances, by active transport processes involving ionic pumps and pinocytosis.5. Potential mechanisms underlying regulation of whole organism and tissue metal loads are outlined and compared with accumulation strategies. The significance of trace metal levels is discussed with regard to the well-being of marine invertebrates and their use in biomonitoring studies of trace metal pollution.  相似文献   

6.
Phytoplankton samples were collected during spring bloom of diatoms from three coastal areas of Japan using a NORPAC P-25 net (25-Μm opening) with a NGG52 prenet (335-Μm opening), and 25 major and trace elements have been analyzed by INAA. Concentration ranges of analyzed phytoplankton samples are much wider than the concentration ranges compiled by Bowen (1979) except for As, and data of marine phytoplankton samples for Br, Sb, Hf, Sc, La, Ce, Sm, and Eu were not included in the compilation. The 25 analyzed elements have been categorized into three groups: elements showing positive correlation with Br, positive correlation with Al, and no positive correlation with Br or Al. The marine phytoplankton samples have been plotted on a Masuzawa-Koyama-Terazaki (MKT) plot and it proved that the MKT plot is applicable to marine phytoplankton samples.  相似文献   

7.
Abdennour  C.  Smith  B. D.  Boulakoud  M. S.  Samraoui  B.  Rainbow  P. S. 《Hydrobiologia》2000,432(1-3):217-227
The concentrations of the trace metals Zn, Cu, Fe, Cd and Pb were measured in four caridean decapods; Atyaephyra desmaresti, Palaemonetes varians, Parapenaeus longirostris and Aristeus antennatus, from freshwater , estuarine and marine habitats in northeast Algeria variably affected by anthropogenic metal contamination. The two coastal species (P. longirostris and A. antennatus) are a food source for the local population. Accumulated metal concentrations varied interspecifically, and intraspecifically between sites and between seasons, except in the case of Aristeus antennatus. The fresh and brackish water species (Atyaephyra desmaresti and Palaemonetes varians) accumulated more Cd and Pb than their marine counterparts. Results are discussed with respect to anthropogenic inputs and the environmental conditions of the regions studied.  相似文献   

8.
Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages.  相似文献   

9.
A. Gunatilaka 《Hydrobiologia》1991,214(1):239-244
Eighteen sediment cores from the Neusiedlersee reed belt were analysed for organic and inorganic carbon, nitrogen, organic and inorganic phosphorus and trace metal content. The depth variation of the distribution patterns of C, P and N in the cores are influenced by: 1. temporal variability of organic matter deposition (e.g. burial of Phragmites litter) 2. the impact of a number of astatic phases in the history of the lake, and 3. early palaeo-ecological changes associated with the alteration of marine to lacustrine environment. At some sites, due to mineralisation, the organic phosphorus compartment in the Pannonian sediments is completely exhausted; accordingly there is a parallel decrease in carbon and nitrogen content in the profiles. These changes in the pattern of the distribution of the nutrients (especially organic phosphorus) can be used to differentiate between the recent and the upper boundary layer of the tertiary sediments. There is no clear trace metal distribution pattern observed in the cores but the Pannonian sediments recorded the lowest levels. In contrast, at some locations surface sediments register a two to three fold increase. The highest C, P, N, values and trace metal concentrations are recorded in the surface sediments deposited after the drying up of the lake a hundred and twenty-two years ago.  相似文献   

10.
The elemental composition of phytoplankton is a fusion of the evolutionary history of the host and plastid, resulting in differences in genetic constraints and selection pressures associated with environmental conditions. The evolutionary inheritance hypothesis predicts similarities in elemental composition within related taxonomic lineages of phytoplankton. To test this hypothesis, we measured the elemental composition (C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd and Mo) of 14 phytoplankton species and combined these with published data from 15 more species from both marine and freshwater environments grown under nutrient-replete conditions. The largest differences in the elemental profiles of the species distinguish between the prokaryotic Cyanophyta and primary endosymbiotic events that resulted in the green and red plastid lineages. Smaller differences in trace element stoichiometry within the red and green plastid lineages are consistent with changes in trace elemental stoichiometry owing to the processes associated with secondary endosymbioses and inheritance by descent with modification.  相似文献   

11.
Trace metal or rare earth element (REE) content of marine macroalgae are underexamined and there is a great need for further understanding since macroalgae are used for food and may also be bioindicators of environmental changes. This study, by using high resolution inductive coupled plasma spectrometer in a clean laboratory (class 1000), investigates the trace metal and REE concentrations and composition in the youngest tissue of various species within three algal classes in the Trondheimsfjord, Norway, comprising phaeo‐, chloro‐, and rhodophytes in winter (February) and Spring (May) 2013, with the main focus on phaeophytes. The macroalgae were found in a clear zonation pattern as a function of depth. A significant difference in element concentration and composition was found between the six phaeophyte species along with a significant difference between winter and spring tissue. A zonation depth trend in algal tissue element concentration was also found for the phaeophytes, where the algal species located in both extreme ends (upper vs. lower littoral zone) obtained a lower element concentration than the algae located in the middle part of the littoral zone. This trend seems to result from different algal contact with the metal‐rich sea surface microlayer. The chlorophytes had 5–27 times higher concentration of REE and lead (Pb) than the two other algal classes. Results indicate that the rhodo‐ and chlorophytes are better accumulators than the phaeophytes for several trace metals and REE.  相似文献   

12.
Some classes of marine phytoplankton are believed to be more tolerant of high concentrations of trace metals than others, but the results of experimental tests of this hypothesis are ambiguous. Eleven species of phytoplankton representing five classes were grown in Aquil medium containing Cd concentrations between 10−8 and 10−5 M ([Cd2+]= 10−9.85 to 10−6.84 M), and growth rates and intracellular concentrations of Cd, C, N, and S were measured. The mean Cd2+ concentration (pCd50) that reduced the growth rate of each species to 50% of its maximum varied by 2.5 orders of magnitude, from 10−6.23 for Emiliania huxleyi to 10−8.79 for Synechococcus sp. Taxonomic trends in Cd resistance were not apparent in these data. Cadmium quotas (mol Cd·L−1 cell volume) were lowest in species of Bacillariophyceae (ANOVA, P < 0.001), suggesting that they might regulate Cd transport differently than other taxa. Cellular S:C molar ratios increased in four of seven phytoplankton grown at high pCd (7.37–6.84) compared to low Cd ion concentrations (no added Cd), a result of increases in S·L−1 cell volume. Nitrogen:carbon molar ratios were also higher in Cd-exposed phytoplankton, as changes in N and S were highly correlated ( r = 0.98, P < 0.0001). In two species that were examined, S:C ratios increased as a linear function of increasing Cd concentration. The results demonstrate large variability in Cd resistance among phytoplankton that is primarily a function of interspecific differences in Cd detoxification.  相似文献   

13.
In bacteria, the intracellular metal content or metallome reflects the metabolic requirements of the cell. When comparing the composition of metals in phytoplankton and bacteria that make up the macronutrients and the trace elements, we have determined that the content of trace elements in both of these microorganisms is markedly similar. The trace metals consisting of transition metals plus zinc are present in a stoichometric molar formula that we have calculated to be as follows: Fe1Mn0.3Zn0.26Cu0.03Co0.03Mo0.03. Under conditions of routine cultivation, trace metal homeostasis may be maintained by a series of transporter systems that are energized by the cell. In specific environments where heavy metals are present at toxic levels, some bacteria have developed a detoxification strategy where the metallic ion is reduced outside of the cell. The result of this extracellular metabolism is that the bacterial metallome specific for trace metals is not disrupted. One of the microorganisms that reduces toxic metals outside of the cell is the sulfate-reducing bacterium Desulfovibrio desulfuricans. While D. desulfuricans reduces metals by enzymatic processes involving polyhemic cytochromes c 3 and hydrogenases, which are all present inside the cell; we report the presence of chain B cytochrome c nitrite reductase, NrfA, in the outer membrane fraction of D. desulfuricans ATCC 27774 and discuss its activity as a metal reductase.  相似文献   

14.
Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.  相似文献   

15.
The interfacial interactions of a toxic trace metal, Pb, with a surface modified by a marine film-forming bacterium, Psedomonas atlantica, were predicted by a structured biofilm model used in conjunction with a chemical speciation model. The validity of the integrated model was tested for batch and continuous operations. Dynamic responses of the biophase due to transient lead concentration increases were also stimulated. The reasonable pre dictions achieved by the model demonstrate its utility in describing trace metal distributions in complex systems where the adsorption properties of inorganic surfaces are modified by adherent bacteria production of extracellular polymers. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
Petroleum is composed of a complex mixture of hydrocarbons that readily undergo chemical and biological conversions on entering aquatic environments. These conversions lead to the formation of a host of oxygenated products, some of which are potentially toxic to marine life and to the consumer of fishery products. State-of-the-art analytical methods, as employed in our laboratories, utilize glass-capillary gas chromatography in conjunction with mass spectrometry to analyze environmental samples containing trace amounts of aliphatic and aromatic petroleum hydrocarbons. These procedures are applied on a routine basis to the analysis of seawater, sediments and tissues of marine organisms. Despite this analytical proficiency, a need exists for analyzing oxygenated and other polar petroleum products in environmental samples. For example, techniques such as high-performance liquid chromatography (HPLC), in conjunction with on-line fluorometric assay techniques and mass spectrometry, make possible the analysis of polar oxygenated compounds resulting from both chemical and biological conversions. These methodologies are first steps toward the development of routine assay procedures for environmental samples. Current techniques for hydrocarbon analyses and new methods for analyzing polar aromatic compounds are discussed.  相似文献   

17.
Necrosols are a unique category of anthropogenic soils that are associated with excavated cemeteries or graveyards. In spite of the growing number of cemeteries and burial sites found across urban and rural areas globally, scientific information regarding the contamination potential of this category of soils is relatively scarce and not properly understood. The purpose of this study is to fill this gap by assessing the contamination significance of trace metal contents in the necrosols associated with two excavated mass graves in Rwanda. For this preliminary geochemical investigation, cemetery soil samples were collected from two excavated mass graves in the Murambi memorial site, Rwanda, and analyzed for trace and major element concentrations. The enrichment factor (EF), chemical index of alteration (CIA), and contamination status of necrosol samples was determined in comparison with the offsite area. The results revealed that the average EF values for both onsite and offsite samples were generally within the class of natural background with only six onsite samples having higher EF values than the offsite or background area. Possible reasons for the progressive depletion of the selected trace element onsite are the relatively low anthropogenic activities and higher weathering intensity of the necrosols in comparison with the background area over time. Even though the mean onsite CIA values for the necrosols were slightly higher than the background area, the index further confirmed that both the necrosols and offsite samples were significantly altered to kaolinic degree. From the resulting pollution index values (PI Nemerow), it can be inferred that the Murambi necrosols were within the range of 0.84 and 1.82, corresponding to the precaution and slightly polluted domain. The current contamination status of the necrosols is likely to have been caused as a result of the anthropogenic input of Cr and Pb onsite relative to the offsite area.  相似文献   

18.
BackgroundThe impact of chemical elements on the biosphere is a function of their concentration and chemical form. Elucidation and prognosing of the latters in water basins and soil extracts is of particular significance for the assessment of their bioaccumulation in plants and animals.ObjectivesTrace metals dynamics in the system water – soil–plant–wild ratsHymenolepis diminuta in two agro-industrial zones (East and West) around Maglizh city, Bulgaria were investigated through experimental studies and thermodynamic modelling of the chemical species.MethodsSamples from surface waters of rivers, their nearby uncultivated soils, meadow uncultivated vegetation (Ranunculus acris and Gramineae) and field rats were collected. In situ measurements and laboratory analyses were performed for the determination of the physico-chemical characteristics and total concentrations of Al, Fe, Mn, Ni, Cu, Zn and Pb. The distribution of their dissolved chemical species in water samples and in the aqueous soil extracts was calculated using a thermodynamic approach. The relationship chemical species - bioaccumulation was discussed.ResultsWaters and soils in the East zone of Maglizh area were found to be more polluted compared to those in the West one, regarding Ni, Mn, Zn, Pb and Cu, while Mn and Cu displayed the highest mobility in West zone soils. Trace metals contents in Ranunculus acris exceed that in Gramineae, since the highest accumulation factors were calculated for Cu and Zn. The highest accumulation in rats was found for Zn followed by Cu, being higher in the West zone. Thermodynamic modelling shows that Mn2+ free ions are dominant in both waters and aqueous soil extracts. Ni2+ and Zn2+ ions followed by metal-organic complexes are dominant in waters of East zone while metal-organic complexes followed by free ions are dominant in waters of West zone and both soil extracts. Metal-organic complexes are dominant for Fe, Cu and Pb in all samples studied, while mainly hydroxy forms (Al(OH)4) followed by metal-organic complexes are typically for Al depending on pH.ConclusionsExperimentally established bioaccumulation of trace metals in the studied vegetation and rats is a consequence of the total concentration of trace metals in waters and soils, their mobility and chemical species. The dominance of organic complexes of trace metals is a prerequisite for their bioaccumulation in plants. Rats are in direct contact with the soil solution and therefore, of importance is the content of free ions of Mn2+, Ni2+, Zn2+, which are easily absorbed through the skin. The host-helminth system wild rat/H. diminuta could be used as a bioindicator for trace metals pollution.  相似文献   

19.
From the fluvial Old Red Sandstone (ORS) of the Lower to Middle Devonian Wood Bay Formation (NW-Spitsbergen), a diverse trace fossil assemblage, including two new ichnotaxa, is described: Svalbardichnus trilobus igen. n., isp. n. is interpreted as the three-lobed resting trace of an early phyllocarid crustacean (Rhinocarididae). Cruziana polaris isp. n. yields morphological details that point towards a trilobite origin. This occurence of presumably marine trace makers in a fluvial red bed sequence raises the question of whether we are dealing with marine ingressions that are not sedimentologically expressed, with homeomorphy, or with an adaptation of marine groups to non-marine environments.  相似文献   

20.
Pore water concentration gradients and fluxes of chemical components have been studied in sediments from six intertidal sites in the Tamar Estuary, SW England over the course of a year. Fluxes of nutrients (ammonia, nitrate, nitrite, phosphate and silicate) and trace metals (iron, manganese, zinc, copper and cadmium) were determined using a laboratory microcosm incorporatingin situ pore water samplers. Nutrients (except nitrate) were transported out of the sediment throughout the year, but nitrate fluxes were directed into the sediment in the summer (denitrification) and out of the sediment in the winter (nitrification). The activities of benthic macrofauna resulted in enhanced fluxes but these differed between sites depending on population structure and density and whether irrigation or sediment reworking predominated. Fluxes of trace metals were seasonally and spatially variable and specific differences were observed that could be attributed to both chemical and biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号