首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RNA and both the total and basic protein content of individual cells were determined by cytospectrophotometry in neurons and perineuronal oligodendroglia of the hypothalamic supraoptic nucleus in rats subjected to various stresses, as well as in ground squirrels during natural hibernation. Barbiturate narcosis and deep cooling, which induced a decrease in body temperature in rats and hibernation in squirrels, caused a marked decrease of all macromolecular constituents in neurons. A similar decrease was found in the perineuronal oligodendroglia in rats, but an increase was observed in ground squirrels. After cessation of cooling, while the body temperature of the animals returned to normal, the neurons, but not the oligodendroglia, of rats showed a significant accumulation of RNA, while RNA accumulated in both neurons and perineuronal oligodendroglia in ground squirrels. Milder cooling of rats, which did not lower their body temperature, induced reciprocal changes in basic-protein content in neuronal and glial cell nuclei, with the accumulation of protein occurring initially in neurons, and subsequently in glia. When cold adaptation was accomplished, the basic protein content of neurons and glial cells returned to the control level. Four days after adrenalectomy in rats, the RNA content decreased in oligodendroglia but not in neurons of the supraoptic nucleus. This effect was completely abolished by daily injections of cortisol in the adrenalectomized animals. The data obtained indicate the existence of differences in metabolic responses to stress between neurons and glial cells of the supraoptic nucleus of the hypothalamus.  相似文献   

2.
Anticipation stress was induced in 16 day-old male rats by placing the animals daily for 7 days into individual cells for 45 min. In the end of each 45 min session, an electric stimulation of paws of the animals was done for 2 min. It was shown by visible cytospectrophotometry of amido black-stained spinal cord sections that the anticipation stress for 7 days resulted in an accumulation of the nuclear and cytoplasmic total proteins in the motoneurons of spinal cord anterior horns, with no changes in the body (in fact, in the nuclei) of the glial cells adjacent to the neurons. Intraperitoneal injection of the tranquilizer diazepam (10 mg per kg) 40 min. before the beginning of the last anticipation stress session gave rise to the return to the normal of the protein content per cell in the motoneuron nucleus and cytoplasm while inducing an increase in the quantity of neuroglia cell protein. Differences in the protein metabolism between the neurons and the neuroglia are discussed.  相似文献   

3.
During the action of an extracellular polarizing current on neurons of the rabbit visual cortex electrical stimulation was applied to various hypothalamic nuclei (preoptic region, anterior hypothalamic region, lateral hypothalamus, mammillary bodies, and posterior hypothalamic nucleus). Hypothalamic stimulation was found to reduce the mean discharge frequency of most visual cortical neurons tested under conditions of anodal polarization, when the initial level of activity is considerably increased, than to a decrease in activity under conditions of cathodal polarization, when the initial level of activity is considerably reduced. The same tendency toward restoration of the initial (spontaneous) level of unit activity after hypothalamic stimulation was discovered when this level was shifted as a result of stimulation by regular flashes. The greatest effect was observed during stimulation of the preoptic region of the hypothalamus. Stimulation of the posterior hypothalamic nucleus was least effective in this respect.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 469–476, September–October, 1977.  相似文献   

4.
Development of direct axonal connections of the hypothalamic mammillary bodies with ventral and dorsal tegmental nuclei of Gudden was studied on fixed rat brains from day 14 of embryonic development until day 10 of postnatal development using the method of diffusion of the lipophilic fluorescent carbocyanine tracer 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate along the neuronal membranes. The tracer was inserted into the mammillary bodies or into the tegmentum and, after incubation in a fixative, fluorescent nerve cells and nerve fibers were visualized in the brain tissue. The mammillotegmental tract was found to start developing earlier than other projection systems of the mammillary bodies. On days 14–15 of embryonic development, it was visualized as a bundle of axons running from the mammillary bodies caudally to the midbrain. A group of neurons in the midbrain tegmentum and their axons going to the mammillary bodies via the mammillary peduncle were first visualized on day 19 of embryonic development. The mammillotegmental tract and mammillary peduncle developed progressively from the moment of birth. Ventral and dorsal tegmental nuclei were formed in the midbrain by day 10 of the postnatal development. Thus, the formation of reciprocal connections of the mammillary bodies with midbrain tegmental nuclei was first described during perinatal development in rats.  相似文献   

5.
Development of direct axonal connections of the hypothalamic mammillary bodies with ventral and dorsal tegmental nuclei of Gudden was studied on fixed rat brains from day 14 of embryonic development until day 10 of postnatal development using the method of diffusion of the lipophilic fluorescent carbocyanine tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate along the neuronal membranes. The tracer was inserted into the mammillary bodies or into the tegmentum and after incubation in a fixative fluorescent nerve cells and nerve fibers were visualized in the brain tissue. The mammillotegmental tract was found to start developing earlier than other conducting systems of the mammillary bodies. On days 14-15 of embryonic development, it was visualized as a bundle of axons running from the mammillary bodies caudally to the midbrain. A group of neurons in the midbrain tegmentum and their axons going to the mammillary bodies via the mammillary peduncle were first visualized on day 19 of embryonic development. The mammillotegmental tract and mammillary peduncle developed progressively from the moment of birth. Ventral and dorsal tegmental nuclei were formed in the midbrain by day 10 of the postnatal development. Thus, the formation of reciprocal connections of the mammillary bodies with midbrain tegmental nuclei was first described during perinatal development in rats.  相似文献   

6.
Differently directed changes in metabolic activity of anterior hypothalamic nuclei's neurons in rats during hyperthermia, fever, and hypothermia were revealed with histochemical methods. During hyperthermia, the activity of energy metabolism enzymes increased as well as RNA content in the neurons of supraoptic, paraventricular and median preoptic anterior hypothalamic nuclei. This is shown by an increase in the metabolic activity of neurons of these nuclei. Metabolic activity in neurons of median preoptic nuclei decreased and was not changed considerably in neurons of supraoptic and paraventricular nuclei during endotoxin-induced fever. The development of hypothermia was characterised by a decrease in metabolic activity of neurons of supraoptic, paraventricular and medium preoptic nuclei. It is supposed that differently directed metabolic activity changes in neurons of anterior hypothalamic nuclei during hyperthermia are connected with the mechanisms of body temperature regulation (median preoptic nuclei) and neurosecretory processes (supraoptic and paraventricular nuclei).  相似文献   

7.
Summary The presence and distribution of CRF-immunoreactive cells and nerve fibers were studied in the mammillary body of the rat, 12 days after placing various types of lesions within the hypothalamus. Anterior and anteriolateral cuts, placed in the midhypothalamus immediately behind the paraventricular nuclei resulted in an almost complete disappearance of CRF-immunoreactive fibers from the median eminence and simultaneous appearance of CRF-containing neurons in the mammillary body. Posterior or postero-lateral hypothalamic cuts carried out in front of the mammillary body caused the accumulation of CRF-immunoreactive material in neurons and neural processes located behind the cut-line. This type of intervention had no effect on the quantity of CRF fibers in the median eminence. A cut running through the central part of the mammillary body in the frontal plane resulted in appearance of CRF neurons only in the posterior half of the mammillary region. Placing a cut behind and over the mammillary body, CRF-immunoreactive neurons became detectable below the superior cut-line. No immunoreactive neurons were observed in the mammillary body when the frontal cut reached the base of the brain at the posterior border of the nucleus, leaving intact its anterior and superior connections. In all these cases when the mammillo-thalamic tract was transected, CRF neurons became detectable in the mammillary body.  相似文献   

8.
Projections of different parts of the orbito-frontal cortex, the basal temporal cortex, and the hippocampus on hypothalamic nuclei were studied by recording focal responses in acute experiments on cats anesthetized with pentobarbital and chloralose. The proreal gyrus was shown to have local projections in the latero-dorsal zones of the preoptic region, in the rostral parts of the medial forebrain bundle, and also in the region of the lateral and posterior hypothalamus with the mammillary bodies. The orbital gyrus projects mainly to the latero-dorsal portions of the forebrain bundle, the latero-ventral part of the preoptic region, and the region of the lateral and latero-dorsal hypothalamic nuclei; projections from the orbital gyrus are relatively diffuse in character. The basal temporal cortex has diffuse projections in the central part of the preoptic region, in the latero-ventral parts of the medial forebrain bundle, and in the lateral mammillary body. No marked foci of activity were found in the hypothalamic structures during hippocampal stimulation. Diffuse projections of the hippocampus were traced in the ventral part of the preoptic region and the ventral regions of the medial forebrain bundle, and also in the lateral hypothalamus and in the lateral mammillary nucleus.A. M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 358–365, July–August, 1976.  相似文献   

9.
It has been shown by two-wavelength cytospectrophotometry of gallocyanin-chrome alum-stained sections that visual deprivation in adult rats kept in a complete darkness for 30 days resulted in an accumulation of cytoplasmic RNA by layer V neurons of the visual cerebral cortex and by the cells of the perineuronal neuroglia of this layer. The nuclear RNA content remained unchanged. Stimulation of intact rats with a flickering or constant light induced an increase in the cytoplasmic RNA in these neurons rather than in the nuclear RNA as well as in RNA in their glial satellite cells. Similar light stimulation of the deprived animals gave rise to a complete return of the neuronal RNA to normal with only a slight decrease in the deprivation-induced RNA accumulation by the neuroglial cells. Neither visual deprivation nor light stimulation affected the RNA content in the neurons and neuroglia of layer V of the motor cerebral cortex. Compartmentation of RNA metabolism within the neuronal-neuroglial unit is discussed.  相似文献   

10.
The hypothalamus of the opossum (Didelphis virginiana), the armadillo (Dasypus novemcinctus mexicanus), and the cat (Felis domestica) was studied using Del Rio Hortega's silver carbonate technique, as modified by Scharenberg ('60). This technique demonstrates astrocytes, oligodendroglia, and neuronal perikarya, but does not impregnate microglia. The morphology of macroglia was observed in ten comparable nuclei in each of the three species. The subpial and subependymal areas were also examined. Astrocytes display more cell body angularity and have more processes in most hypothalamic regions of the cat when compared to similar regions of the opossum and armadillo. In the anterior hypothalamic nucleus, the ventromedial and the dorsomedial hypothalamic nuclei, and the medial mammillary nucleus of all three species, astrocytes send processes to neurons, but neuronal and astrocytic perikarya are usually not directly contiguous. However, oligodendrocytes in a perisomatic position on neurons are a consistent feature in these nuclei. A closer relationship appears to exist between astrocytes and neurons in the neurosecretory nuclei. In the supraoptic nucleus and paraventricular nucleus of all three species a basket-like structure, designated a ?pericellular envelope”? was observed surrounding neuronal perikarya. This structure is composed of astrocytic and oligodendroglial cell bodies and processes, and is most highly developed in the cat. A dense astrocytic plexus was observed in the suprachiasmatic nucleus of the cat, and in the comparable nuclei of the armadillo and opossum. The most prominent macroglial cell type of the lateral hypothalamic and lateral mammillary nuclei of all three species is the interfascicular oligodendrocyte. The posterior hypothalamic nucleus of each species has many perisomatic oligodendrocytes, and in the armadillo and cat astrocytes are closely related to the larger neurons. A subpial plexus, consisting of a palisade of small glial cells with many processes, is present in the hypothalamus of the three species. Ependymal cells have long projecting processes throughout the length of the third ventricle in the armadillo hypothalamus, but such processes are only apparent in the region of the infundibular nucleus and median eminence in the opossum and cat.  相似文献   

11.
Three distinct groups of monoamine (MA)-containing nerve cell bodies have been visualized in the hypothalamus and preoptic area of the cat by means of the Falck-Hillarp fluorescence histochemical technique. First, numerous small-sized catecholamine (CA) type neurons were disclosed within the ventral half of the periventricular area in the supraoptic and middle hypothalamic regions. The round to oval neurons of this medio-ventral group were more especially abundant around the base of the third ventricle, within the arcuate and supraopticus diffusus nuclei. Numerous medium-sized CA perikarya identified as the dorsal group, were also mapped out in the dorsal and posterior hypothalamic areas. Finally, a small population of both CA and serotonin (5-hydroxytryptamine, 5-HT)-containing neurons was disclosed within the lateral area of the middle and mammillary hypothalamic regions. These multipolar or elongated neurons which compose the lateral group were lying either along the ventrolateral surface of the hypothalamus or around the ventrolateral aspect of the fornix. In addition to these three MA cell groups, a few cells displaying a fluorescence of the CA type were also visualized in the so-called “dorsal chiasmatic nucleus” after α-methyl-dopa treatment. High density of CA axon terminals were found, on the other hand, in the external layer of the median eminence, in the dorsomedial, paraventricular, supraoptic and suprachiasmatic nuclei, and also within nucleus interstitialis of stria terminalis. In the present study, however, it was not possible to identify with certainty any concentration of 5-HT axon terminals in the cat hypothalamus. Therefore, except for the lateral cell group which could be peculiar to the cat, the topographical distribution of MA nerve cell bodies and axon terminals in the hypothalamus of the cat appears similar to the morphological organization of the MA neuronal elements in the hypothalamus of the rat.  相似文献   

12.
Efferent projections of the lateral septal nucleus (LS) to the preoptic area and the hypothalamus were identified in 20 female guinea pigs after iontophoretic injection of the anterograde axonal tracer Fluoro-Ruby. Tubero-infundibular (TI) neurons of the preoptic area and the hypothalamus were retrogradely labeled after intracardiac injection of Granular Blue or Fluoro-Gold. Magnocellular neurons of the supraoptic and paraventricular nuclei were also labeled. The double labeling procedure allowed an estimation of the extent of the direct relationship between LS efferents and TI neurons. Contacts between lateral septal fibers and TI cell bodies were mainly observed at the light-microscopical level in the preoptic area. A group of labeled fibers coursing along the third ventricle established sparse connections with hypothalamic periventricular TI neurons. A few appositions was observed in the infundibular (arcuate) nucleus, suggestive of a monosynaptic regulation of TI neurons by a septo-arcuate tract. Close association with labeled magnocellular neurons was also noted at the edge of the supraoptic and paraventricular nuclei. The sparse but direct connections between LS and TI neurons may be involved in the neuroendocrine functions of the LS.  相似文献   

13.
Correlation between morphology and function in the hippocampus and hypothalamus was studied by electrophysiological and morphological techniques. Single unit responses were recorded extracellularly in the arcuate and medial preoptic nuclei of the hypothalamus to application of single stimuli to the hippocampus. Phasic responses and primary inhibition predominated in the arcuate nucleus, whereas both phasic and tonic responses were observed in the medial preoptic nucleus. In the morphological experiments horseradish peroxidase was injected into the same region of the hippocampus. Stained cells were found in the nuclei of the mammillary body, mediobasal hypothalamus, and medial preoptic nucleus. Groups of stained neurons were discovered at the periphery of the ventro- and dorsomedial and also in the lateral and mammillary nuclei of the hypothalamus. Besides fusiform and triangular neurons, reticular neurons also were found in all structures except the medial mammillary nucleus. The results are discussed from the standpoint of interaction between hypothalamus and hippocampus.A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 427–434, September–October, 1979.  相似文献   

14.
S A Whatley  C Hall    L Lim 《The Biochemical journal》1981,196(1):115-119
The organization of chromatin in neuronal and glial nuclei isolated from different brain regions of rats during development was studied by digestion of nuclei with micrococcal nuclease. A short chromatin repeat length (approx. 176 base-pairs compared with that of glial nuclei from foetal cerebral cortex (approx. 200 base-pairs) was present in hypothalamic neurons throughout the ages studied, which was similar to the repeat length of cortical neurons from 7- and 25-day-old animals (approx. 174 base-pairs). Whereas in cortical neurons the chromatin repeat length shortened from approx. 200 base-pairs in the foetus to approx. 174 base-pairs in the first postnatal week, the short chromatin repeat length of hypothalamic neurons was already present 2 days before birth, indicating that hypothalamic neurons differentiate earlier than cortical neurons during brain development.  相似文献   

15.
Spontaneous and evoked unit activity in the anterior limbic cortex in response to stimulation of the splanchnic and sciatic nerves and of the mammillary region of the hypothalamus were recorded extracellularly in acute experiments on cats. The study of heterogeneous transsynaptic influence on limbic cortical neurons showed that in the presence of effective sensory viscerosomatic convergence, weak convergence of influences from the central hypothalamic and peripheral sources took place. Short-latency responses of limbic cortical neurons to stimulation of the mammillary bodies consisted of orthodromic and antidromic responses, evidence of the existence of short two-way connections between the anterior limbic cortex and mammillary nuclei of the hypothalamus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 419–426, September–October, 1979.  相似文献   

16.
The distribution of luteinizing hormone-releasing hormone (LHRH)-immunostained perikarya and processes was examined in the forebrains of six sexually mature female pigs by use of indirect biotin-avidin horseradish peroxidase immunocytochemistry. Two primary antisera (Drs. Y.F. Chen and V.D. Ramirez CRR11B73 and Miles-Yeda UZ-4) yielded positive staining. Adjacent sections treated either primary antiserum preabsorbed with LHRH or with normal rabbit serum substituted for primary antiserum lacked positive staining. The greatest proportion of LHRH-immunostained perikarya were found in the medial preoptic area adjacent to the organum vasculosum of the lamina terminalis. The LHRH-immunostained perikarya were also scattered rostrally in the diagonal band of Broca, and within the lateral hypothalamic area, paraventricular nucleus, periventricular zone, suprachiasmatic nucleus, and medial basal hypothalamus. LHRH-immunostained processes, which extended from the medial preoptic area, coursed either along the ventral surface to the median eminence or medially and ventrally along the third ventricular wall ventrally to the median eminence and caudally to the level of the mammillary bodies. Extrahypothalamic processes were located adjacent to the lateral ventricular floor and the third ventricle from the lateral septal area (stria terminalis) to the level of the habenular nucleus. LHRH-immunostained neurons were unipolar, bipolar, and multipolar. Close associations between individual LHRH-immunostained neurons were observed.  相似文献   

17.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

18.
Using optical techniques by Nauta--Gygax, Wiitanen and Eager, degenerating nerve fibres and terminals were demonstrated to be present in the hypothalamic mammillary nuclei 9 days after a part of field 17 of the brain cortex was extirpated. Electron microscopic examination revealed different changes in large and small terminals of the boutons 5, 7 and 11 days after similar operations. The data represented demonstrate direct monosynaptic bilateral connections in field 17 of the optic cortex with the hypothalamic mammillary nuclei in cats. They are realized by fine fibrillae terminating mainly in large terminal boutons which form synapses on big and small dendritic branches. Thus, there is a structural base for the immediate influence of the optic cortex on the posterior hypothalamus.  相似文献   

19.
The effect of neonatal castration of male rats on the sexual differentiation of the hypothalamus at puberty was studied. Male rats were castrated on days 1, 5 and 7 after birth. Their brains were processed for study on days 83-85. The neurons and cell nuclei of the preoptic area, mediobasal and ventromedial nuclei were assessed for changes in cell and nuclear sizes and dry weight (calculated using interferometric methods). Neonatal castration resulted in size as well as dry weight increase in the neurons of the anterior and mediobasal hypothalamus. The dry weight increased by 34% (P less than 0.001) in the medial preoptic area, by 25% (P less than 0.001) in the arcuate neurons and by 22% (P less than 0.001) in the ventromedial nucleus. The cell nuclei exhibited perceptible weight increase too--in the medial preoptic area 68% (P less than 0.001); 55% in the arcuate neurons (P less than 0.001), and 39% in the ventromedial region. The weight and size increases in neonatally castrated males were equal to those of females of the same age. In rats castrated on day 7, the cell sizes and dry weights of the ventromedial nucleus increased but the cell nuclei exhibited only little change. It is assumed that the changes in the dry weight may be the result of increased synthetic processes in these groups of neurons which are connected with the tonic and cyclic release of gonadotropins. These changes also point to the hypothalamic differentiation shifting to the female type in the absence of the inducing effect of androgens.  相似文献   

20.
The present communication deals with the cytochemical localization of angiotensinogen (ATG) immunoactivity in the hind-brain and spinal cord of neonatal (1-day-old) and adult (3-month-old pregnant) female rats. In the neonatal hind-brain, the immunoreactive cells were more numerous than in that of adult rats. In the adult rat hind-brain, the number of ATG-positive cells was quite limited in each nucleus. Further, in some nuclei, only neurons or neuroglia were positive, while in others the immunoactivity was observed in both the components. Spinal cords of neonatal rats showed a few undifferentiated ATG-positive cells in the grey matter. Contrary to this, the spinal cord of adult animals contained numerous immunoreactive glial cells in the grey matter, fasciculus cuneatus and fasciculus gracilis. Immunoactivity in the neurons was localized in the Nissl bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号