首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. Laisk  O. Kiirats  V. Oja  U. Gerst  E. Weis  U. Heber 《Planta》1992,186(3):434-441
Exchange of CO2 and O2 and chlorophyll fluorescence were measured in the presence of 360 1 · 1–1 CO2 in nitrogen in Helianthus annuss L. leaves which had been preconditioned in the dark or at a photon flux density (PFD) of 24 mol · m–2 · s–1 either in 21 or 0% O2. An initial light-dependent O2 outburst of 6 mol · m–2 was measured after aerobic dark incubation. It was attributed to the reduction of electron carriers, predominantly plastoquinone. The maximum initial rate of O2 evolution at PFD 8000 mol · m–2 · s–1 was 170 mol · m–2 · s–2 or about four times the steady CO2-and light-saturated rate of photosynthesis. Fluorescence measurements showed that the rate was still acceptor-limited. Fast O2 evolution ceased after electron carriers were reduced in the dark-adapted leaf, but continued for a short time at the lower rate of 62 mol · m–2 · s–1 in the light-adapted leaf. The data are interpreted to show that enzymes involved in 3-phosphoglycerate reduction are dark-inhibited, but were fully active in low light. In a dark-adapted leaf, respiratory CO2 evolution continued under nitrogen; it was partially inhibited by illumination. Prolonged exposure of a leaf to anaerobic conditions caused reducing equivalents to accumulate. This was shown by a slowly increasing chlorophyll fluorescence yield which indicated the reduction of the PSII acceptor QA in the dark. When the leaf was illuminated, no O2 evolution was detected from short light pulses, although transient O2 production was appreciable during longer light pulses. This indicates that an electron donor (pool size about 2–3 e/PSII reaction center) became reduced in the dark and the first photons were used to oxidise this donor instead of water.Abbreviations Chl chlorophyll - CRC carbon reduction cycle - GAPDH NADP-glyceraldehyde-phosphate dehydrogenase - PFD photon flux density - PGA 3-phosphoglycerate - RuBP ribulose bisphosphate - TCA tricarboxylic acid cycle To whom correspondence should be addressedThis work received support by the Estonian Academy of Sciences, the Gottfried-Wilhelm-Leibniz Program of the Deutsche For-schungsgemeinschaft and the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

2.
We examined the effects of o-phenanthroline and LiClO4 on oxygen evolution and electron transport in the Photosystem 2 complex of the pea. Treatment of Photosystem 2 particles with a combination of 3.0 mM o-phenanthroline and 1.0 M LiClO4 for 30–40 min at 0°C decreased the oxygen-evolving activity with the electron acceptor (either phenyl-p-benzoquinone or 2,6-dichlorophenol indophenol) to less than 5% of the original level. However with the same treatment, the electron-transport activity from an artificial electron donor, 1,5-diphenylcarbohydrazide, to 2,6-dichlorophenol indophenol remained at 60% of the original activity. The amount of manganese in the Photosystem 2 complex decreased in parallel with the loss of oxygen evolution following treatment. These observations suggest that the treatment of the Photosystem 2 complex with o-phenanthroline and LiClO4 inhibits electron transport on the oxygen-evolving side much more significantly than on the electron-acceptor side.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenol indophenol - DPC 1,5-diphenylcarbo hydrazide - EDTA ethylenediaminetetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 4-morpholineethanesulfonic acid - PBQ phenyl-p-benzoquinone - PS 2 Photosystem 2  相似文献   

3.
S. Malkin 《Planta》1987,171(1):65-72
Using a photoacoustic technique it has been possible to observe fast oxygen evolution and uptake transients at a high time resolution (approx. 0.2 s), when a dark-adapted leaf is reilluminated. There is initially a rapid pulse of oxygen evolution, correlated with the initial fluorescence rise (total duration under the experimental conditions used about 1–2 s), corresponding presumably to the photoreduction of the plastoquinone pool. This phenomenon may be utilized to calibrate the oxygen-evolution photoacoustic signal. The first pulse is followed by a series of slower bursts of oxygen uptake and evolution, reflecting various pools which are expressed following sequential activation of various parts of the photosynthetic apparatus, until achievement of a steady state.Abbreviations and symbols RuBP ribulose-1,5-bisphosphate - PSI, PSII photosystems I, II - Fo, Fm, F(t) initial, maximum and instantaneous chlorophyll fluorescence emission  相似文献   

4.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   

5.
K. J. van Wijk  G. H. Krause 《Planta》1991,186(1):135-142
Photoinhibition of photosynthesis in vivo is shown to be considerably promoted by O2 under circumstances where energy turnover by photorespiration and photosynthetic carbon metabolism are low. Intact protoplasts of Valerianella locusta L. were photoinhibited by 30 min irradiation with 3000 mol photons · m–2 · s–1 at 4° C in saturating [CO2] at different oxygen concentrations, corresponding to 2–40% O2 in air. The photoinhibition of light-limited CO2-dependent photosynthetic O2 evolution increased with increasing oxygen concentration. The uncoupled photochemical activity of photosystem II, measured in the presence of the electron acceptor 1,4-benzoquinone, and maximum variable fluorescence, Fv, were strongly affected and this inhibition was closely correlated to the O2 concentration. The effect of O2 did not saturate at the highest concentrations applied. An increase in photoinhibitory fluorescence quenching with [O2], although less pronounced than in protoplasts, was also observed with intact leaves irradiated at 4° C in air. Initial fluorescence, Fo, was slightly (about 10%) increased by the inhibitory treatments but not influenced by [O2]. A long-term cold acclimation of the plants did not substantially alter the O2-sensitivity of the protoplasts under the high-light treatment. From these experiments we conclude that oxygen is involved in the photoinactivation of photosystem II by excess light in vivo.Abbreviations and Symbols Chl chlorophyll - Fo initial fluorescence - FM maximum fluorescence - Fv maximum variable fluorescence - PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PFD photon flux density - qN non-photochemical quenching - qP photochemical quenching - S quantum efficiency of electron transport of photosystem II This study was financially supported by the Deutsche Forschungs-gemeinschaft (SFB 189) and the Foundation for Fundamental Biological Research (BION), which is subsidised by the Netherlands Organization for the Advancement of Pure Research (NWO).  相似文献   

6.
Barley (Hordeum vulgare L. cv. Alfa) seedlings were treated for 4 d before UV-B irradiation with 0.05 mM proline or 150 mM NaCl. UV-B exposure induced synthesis of yellow coloured compounds with maximum absorbance at 438 nm. The content of these compounds was increased in proline-treated and decreased in NaCl-treated plants. UV-B radiation reduced chlorophyll/carotenoids ratio, oxygen evolution rate and photochemical efficiency of PS 2 as estimated by chlorophyll fluorescence and increased proline accumulation, H2O2 generation and lipid peroxidation. Exogenous proline had no effect on the parameters studied and did not change the response of plants to UV-B radiation. NaCl inhibited photochemical efficiency of PS 2, reduced oxygen evolution and increased H2O2 concentration and lipid peroxidation. The combination of NaCl and proline treatment led to lowering the inhibitory effect of NaCl in non UV-B irradiated seedlings. There was not relationship between the level of UV-B-induced compounds and UV-B tolerance of barley seedlings.  相似文献   

7.
Fluorimetric, photoacoustic, polarographic and absorbance techniques were used to measure in situ various functional aspects of the photochemical apparatus of photosynthesis in intact pea leaves (Pisum sativum L.) after short exposures to a high temperature of 40 ° C. The results indicated (i) that the in-vivo responses of the two photosystems to high-temperature pretreatments were markedly different and in some respects opposite, with photosystem (PS) II activity being inhibited (or down-regulated) and PSI function being stimulated; and (ii) that light strongly interacts with the response of the photosystems, acting as an efficient protector of the photochemical activity against its inactivation by heat. When imposed in the dark, heat provoked a drastic inhibition of photosynthetic oxygen evolution and photochemical energy storage, correlated with a marked loss of variable PSII-chlorophyll fluorescence emission. None of the above changes were observed in leaves which were illuminated during heating. This photoprotection was saturated at rather low light fluence rates (around 10 W · m–2). Heat stress in darkness appeared to increase the capacity for cyclic electron flow around PSI, as indicated by the enhanced photochemical energy storage in far-red light and the faster decay of P 700 + (oxidized reaction center of PSI) monitored upon sudded interruption of the far-red light. The presence of light during heat stress reduced somewhat this PSI-driven cyclic electron transport. It was also observed that heat stress in darkness resulted in the progressive closure of the PSI reaction centers in leaves under steady illumination whereas PSII traps remained largely open, possibly reflecting the adjustment of the photochemical efficiency of undamaged PSI to the reduced rate of photochemistry in PSII.Abbreviations B1 and B2 fraction of closed PSI and PSII reaction centers, respectively - ES photoacoustically measured energy storage - Fo, Fm and Fs initial, maximal and steady-state levels of chlorophyll fluorescence - P700 reaction center of PSI - PS (I, II) photosystem (I, II) - V = (Fs – Fo)/(Fm – Fo) relative variable chlorophyll fluorescence We wish to thank Professor R. Lannoye (ULB, Brussels) for the use of this photoacoustic spectrometer and Mrs. M. Eyletters for her help.  相似文献   

8.
Functional chloroplasts from photoheterotrophic Euglena gracilis can be isolated in isoosmotic gradients of 10–80% Percoll. The chloroplasts display rates of CO2 dependent O2 evolution and CO2 fixation of 30–50 mol mg-1 chlorophyll h-1 or 25–35% of the net O2 evolution by the whole cells and appear to be strikingly different from spinach chloroplasts in several respects: 1. tolerance to high concentration of orthophosphate in the assay medium; 2. inability to support oxaloacetate-dependent O2 evolution; 3. ability to support only low to moderate rates of 3-phosphoglycerate-dependent O2 evolution; 4. an apparent absence of a phosphate translocator in the terms described by Heldt and Rapley ([1970] FEBS Lett. 10, 143–148).University of California, Dept. of Plant and Soil Biology, 108 Hilgard Hall, Berkeley, CA 94720 USA  相似文献   

9.
Primary leaves of bean (Phaseolus vulgaris L.) seedlings cultivated for 14 days in a growth chamber on complete (control) and phosphate deficient (−P) Knop liquid medium were used for measurements. The −P leaves were smaller and showed an increased specific leaf area (SLA). Their inorganic phosphate (Pi) concentration was considerably lowered. They did not show any significant changes in chlorophyll (Chl) (a + b) concentration and in their net CO2 assimilation rate when it was estimated under the conditions close to those of the seedlings growth. Light response curves of photosynthetic net O2 evolution (P NO2) of the leaves for the irradiation range up to 500 μmol(photon) m−2 s−1 were determined, using the leaf-disc Clark oxygen electrode. The measurements were taken under high CO2 concentration of about 1 % and O2 concentrations of 21 % or lowered to about 3 % at the beginning of measurement. The results obtained at 21 % O2 and the irradiations close to or higher than those used during the seedlings growth revealed the phosphorus stress suppressive effect on the leaf net O2 evolution, however, no such effect was observed at lower irradiations. Other estimated parameters of P NO2 such as: apparent quantum requirement (QRA) and light compensation point (LCP) for the control and −P leaves were similar. However, with a high irradiation and lowered O2 concentration the rate of P NO2 for the −P leaves was markedly higher than that for the control, in relation to both the leaf area and leaf fresh mass. This difference also disappeared at low irradiations, but the estimated reduced QRA values indicate, under those conditions, the increased yield of photosynthetic light reaction, especially in the −P leaves. The presented results confirm the suggestion that during the initial phase of insufficient phosphate feeding the acclimations in the light phase of photosynthesis, both structural and functional appear. They correspond, probably, to the increased energy costs of carbon assimilation under phosphorus stress, e.g. connected with raised difficulties in phosphate uptake and turnover and enhanced photorespiration. Under the experimental conditions especially advantageous for the dark phase of photosynthesis (saturating CO2 and PAR, low O2 concentration), those acclimations may be manifested as an enhancement of photosynthetic net O2 evolution.  相似文献   

10.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

11.
The aim of this study was to assess the impact of the microalgae Chlorella vulgaris on the rice seedlings at physiological conditions and under cadmium (Cd) stress. We examined the effects of C. vulgaris in the nutrient solution on rice seedlings grown hydroponically in the presence and the absence of 150 μM CdCl2, using the low (77 K) temperature and pulse amplitude modulated (PAM) chlorophyll fluorescence, P700 photooxidation measurements, photochemical activities of both photosystems, kinetic parameters of oxygen evolution, oxidative stress markers (MDA, H2O2 and proline), pigment content, growth parameters and Cd accumulation. Data revealed that the application C. vulgaris not only stimulates growth and improves the functions of photosynthetic apparatus under physiological conditions, but also reduces the toxic effect of Cd on rice seedlings. Furthermore, the presence of the green microalgae in the nutrient solution of the rice seedlings during Cd exposure, significantly improved the growth, photochemical activities of both photosystems, the kinetic parameters of the oxygen-evolving reactions, pigment content and decreased lipid peroxidation, H2O2 and proline content. Data showed that the alleviation of Cd-induced effects in rice seedlings is a result of the Cd sorption by microalgae, as well as the reduced Cd accumulation in the roots and its translocation from the roots to the shoots.  相似文献   

12.
H. T. Choe  K. V. Thimann 《Planta》1977,135(2):101-107
The retention of photosystems I and II and or RuDP carboxylase activity in chloroplasts isolated from the first leaves of Victory oat (Avena sativa L.) seedlings was followed as the chloroplasts senesced in darkness. Both photosystems (PS) I and II retained their full activity after 3 days at 1°C, while even after 7 days at 1°C around 80% of the activity was still present. After 3 days at 25°C, PS I lost only 20% and PS II 50% of the initial activity. Acid pH increased the rate of decay of both systems, PS II falling almost to zero after 3 days at pH 3.5 (at 25°C). The preparations were almost bacteria-free, and addition of antibiotics not only did not improve their stability, but accelerated the rates of loss of photosynthetic activity. This is held to indicate that the enzymes are undergoing some turnover even in isolated chloroplasts. If the leaves were allowed to senesce in the dark first and the chloroplasts then isolated, their photosynthetic activities had greatly decreased, showing that senescence is more rapid in situ than in isolation. Under these conditions PS I decayed more rapidly than PS II. Ribulosediphosphate carboxylase, as measured by CO2 fixation, declined more rapidly than the photosystems, though the addition of kinetin and indole-3-acetic acid somewhat decreased the rate of loss, at least for the first 24 h. When the intact (detached) leaves were held in the dark, the rate of oxygen evolution declined rapidly, but in monochromatic blue light (450 nm) at 25°C about 30% of the initial rate was retained after 72 h.Abbreviations BSA bovine serum albumin, chl, chlorophyll - DCPIP dichlorophenol-indophenol - EDTA ethylenediaminetetraacetic acid - IAA indole-3-acetic acid - PS photosystem - PVP soluble polyvinylpyrrolidine - RuDP Ribulose-1,5-diphosphate - TES N-tris-(hydroxymethyl)-methyl-2-amino-ethane sulfonic acid  相似文献   

13.
Jin  Ming-Xian  Li  De-Yao  Mi  Hualing 《Photosynthetica》2002,40(4):581-586
Temperature dependence (25–50 °C) of chlorophyll (Chl) fluorescence induction, far-red radiation (FR)-induced relaxation of the post-irradiation transient increase in apparent F0, and the trans-thylakoid proton gradients (pH) was examined in maize leaves. Temperatures above 30 °C caused an elevation of F0 level and an enhancement of F0 quenching during actinic irradiation. Millisecond delayed light emission (ms-DLE), which reflects the magnitude of pH, decreased strikingly above 35 °C, and almost disappeared at 50 °C. It indicates that the heat-enhanced quenching of F0 under actinic irradiation could not be attributed mainly to the mechanism of pH-dependent quenching. The relaxation of the post-irradiation transient increase in apparent F0 upon FR irradiation could be decomposed into two exponential components (1 = 0.7–1.8 s, 2 = 2.0–9.9 s). Decay times of both components increased with temperature increasing from 25 to 40–45 °C. The bi-phasic kinetics of FR-induced relaxation of the post-irradiation transient increase in apparent F0 and its temperature dependence may be related to plastoquinone (PQ) compartmentation in the thylakoid membranes and its re-organisation at elevated temperature.  相似文献   

14.
Gunter O. Kirst 《Planta》1981,151(3):281-288
The giant-celled alga Griffithsia monilis has a low light compensation point and saturates photosynthesis at 60–90 mol photons m-2s-1 (oxygen evolution and CO2 fixation). Under dark and low light intensities 14C is preferentially incorporated into amino acids (mainly aspartate and alanine). With increasing light a gradual change was observed and, under light saturation, compounds of the anionic fraction (digeneaside and hexosephosphates) were the most strongly labeled compounds, together with the amino acids glycine and serine. To a large extent (30–40% of the total) 14C was fixed into EtOH-insoluble products, the hydrolysates of which consisted mainly of glucose and mannose. In the steady state the rates of photosynthesis and respiration decreased with increasing salinity. Changes in the rates after hyperosmotic shocks were less severe in cells adapted to high salinities. Photorespiration exists in Griffithsia: Glycine and serine are the major labeled compounds in O2-saturated media.  相似文献   

15.
Application of NaHSO3 solution at low concentrations (20–200 μM) to the culture medium enhanced photosynthetic oxygen evolution in cyanobacterium Synechocystis PCC6803 by more than 10%. The slow phase of ms-DLE was strengthened, showing that the transmembrane proton motive force related to photophosphorylation was enhanced. It was also observed that dry weight as well as ATP content under illuminated conditions were both increased after the treatment, indicating that low concentrations of NaHSO3 could enhance the supply of ATP and thus increase biomass accumulation. In accord with the promotion in the photosynthetic oxygen evolution and ATP content, the transient increase in chlorophyll fluorescence after the termination of actinic light was increased; and meanwhile, the half-time of re-reduction of P700+ in the presence of DCMU after a pulse light under background far-red light was shortened by approximately 30%, indicating that cyclic electron flow around PS I was accelerated by the treatment. Based on these results it is suggested that the increase in photosynthesis in Synechocystis PCC6803 caused by low concentrations of NaHSO3 solution might be due to the stimulation of the cyclic electron flow around PS I and thus the increase in photophosphorylation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Strains of filamentous, non-heterocystous cyanobacteria from the Pasteur Culture Collection (PCC), able to synthesize nitrogenase under anaerobic test conditions, were tested for growth with N2 as sole nitrogen source at low O2 partial pressure (less than 0.05%). Plectonema boryanum (PCC 73110) exhibited exponential growth under these conditions. This capacity was restricted to light intensities not exceeding 500 lux. Growth rates were 0.014/h at 200 and 0.023 at 500 lux and similar to those of anaerobic and aerobic control cultures with nitrate as N-source. For N2-fixing cultures incubated at 200 and 500 lux, acetylene reduction rates were 4–8 and 5–14 nmol C2H4 per mg protein per min, respectively. The ratio of phycocyanine to chlorophyll was higher (200 lux) or slightly reduced (500 lux) in N2-fixing cultures as compared to control cultures with nitrate as N-source. On the basis of epifluorescence microscopy and microfluorimetry, no differences in pigment contents were found between individual cells or filaments of N2-fixing cultures. Also no noteworthy differences were observed between the pycobiliprotein composition of individual cells in N2 fixing cultures as compared to nitrate-grown controls. Thus the observed exponential growth of P. boryanum at low light intensities implies simultaneous nitrogen fixation and oxygenic photosynthesis. Additional continuous culture experiments showed that N2-fixing exponential growth was dependent on O2 partial pressures lower than 0.2–0.4%.The other strains tested (PCC 6412, 6602, 7403, 7104) did not grow under such conditions.Abbreviations Chl chlorophyll - PBP phycobiliproteins - PC phycocyanin - PCC Pasteur Culture Collection - OD optical density  相似文献   

17.
In Halobacterium halobium, nicotine is known to block the synthesis of retinal. Cells grown in the presence of nicotine do not show any photophobic response. Addition of retinal1 or retinal2 restored the photophobic responses to light-increase in the UV and to light-decrease in the green-yellow part of the spectrum. The action spectra of the two retinal2-photosystems were red-shifted by 15–20 nm, compared with the corresponding retinal1 systems. We conclude that each of the two photosystems, PS 370 and PS 565, has its own photosensory pigment with retinal as the chromophoric group.  相似文献   

18.
The physiological response of leaves developed in low light (L) on Fagus crenata seedlings exposed to different levels of high light (H: high light, M: medium light) was studied. Measurements were conducted on potted seedlings in the F. crenata forest understory. The seedlings with leaves developed in L were transferred to H (L–H) and M (L–M) in summer. On exposure to high light, the photochemical efficiency of dark-adapted PSII (Fv/Fm) immediately decreased and was followed by a subsequent recovery in both L–H and L–M leaves. The mean value of Fv/Fm in L–H leaves was lower than that in L–M leaves through experiments, indicating that the degree of photoinhibition in L–H leaves was greater than that in L–M leaves. About 1 month after transfer, 37% and 5% of leaves had fallen in L–H and L–M seedlings, respectively. This result also indicated the greater photoinhibition in L–H leaves. Moreover, the photosynthetic capacity (PNmax) of L–H leaves decreased. In contrast, the PNmax of L–M leaves increased, although the PNmax was lower than that of M control leaves. An increase in the xanthophyll cycle pool (VAZ), indicating an increase of the photoprotective function, was found in both L–H and L–M leaves. Especially, the VAZ pool in L–M leaves was higher than that in M leaves by the end of experiments. L–M leaves may avoid photoinhibition effectively by the decrease in excess light with the increase of the PNmax or VAZ pool, compared to L–H leaves. Thus, the physiological acclimation on exposure to high light depended on the degree of high light. To achieve successful photosynthetic acclimation with slight photoinhibition, the variation of light intensity before and after exposure to high light would be an important factor because of the difference in excess light.  相似文献   

19.
An alternative approach to quantification of the contribution of non-QB-reducing centers to Chl a fluorescence induction curve is proposed. The experimental protocol consists of a far-red pre-illumination followed by a strong red pulse to determine the fluorescence rise kinetics. The far-red pre-illumination induces an increase in the initial fluorescence level (F25 μs) that saturates at low light intensities indicating that no light intensity-dependent accumulation of QA occurs. Far-red light-dose response curves for the F25 μs-increase give no indication of superimposed period-4 oscillations. F25 μs-dark-adaptation kinetics following a far-red pre-pulse, reveal two components: a faster one with a half-time of a few seconds and a slower component with a half-time of around 100 s. The faster phase is due to the non-QB-reducing centers that re-open by recombination between QA and the S-states on the donor side. The slower phase is due to the recombination between QB and the donor side in active PS II reaction centers. The pre-illumination-induced increase of the F25 μs-level represents about 4–5% of the variable fluorescence for pea leaves (∼2.5% equilibrium effect and 1.8–3.0% non-QB-reducing centers). For the other plant species tested these values were very similar. The implications of these values will be discussed.  相似文献   

20.
Previous investigations (Specht, S., Pistorius, E.K. and Schmid, G.H.: Photosynthesis Res. 13, 47–56, 1987) of Photosystem II membranes from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contain normally stacked thylakoid membranes and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked or essentially unstacked thylakoids with occasional membrane doublings, have been extended by using monospecific antisera raised against the three extrinsic polypeptides of 33,21 and 16 kDa. The results show that all three peptides are synthesized as well in wild type tobacco as in the two mutants to about the same level and that they are present in thylakoid membranes of all three plants. However, in the mutants the 16 and 21 kDa peptides (but not the 33 kDa peptide) are easily lost during solubilization of Photosystem II membranes. In the absence of the 16 and 21 kDa peptide Photosystem II membranes from the mutants have a higher O2 evolving activity without addition of CaCl2 than the wild type Photosystem II membranes. On the other hand, after removal of the 33 kDa peptide no significant differences in the binding of Mn could be detected among the three plants. The results also show that reaction center complexes from wild type tobacco and the mutant Su/su are almost identical to the Triton-solubilized Photosystem II membranes from the mutant Su/su var. Aurea.Abbreviations PS photosystem - chl chlorophyll - LHCP light harvesting chlorophyll a/b protein complex - WT wild type - OEE1, OEE2 and OEE3 oxygen evolution enhancing complex of 29–36 kDa, 21–24 kDa and 16–18 kDa, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号