首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although elongation of epidermal cells in submerged leaves is thought to be a common feature of heterophyllous aquatic plants, such elongation has not been observed in Ludwigia arcuata Walt. (Onagraceae). In this study we found that reduced culture temperature induced the elongation of epidermal cells of submerged leaves in L. arcuata. Since such submerged leaves also showed a reduction in the number of epidermal cells aligned across the leaf transverse axis, these data indicate that heterophyllous leaf formation in L. arcuata is partially temperature sensitive, i.e., the elongation of epidermal cells was temperature sensitive while the reduction in the number of epidermal cells did not show such temperature sensitivity. To clarify the mechanisms that cause such temperature sensitivity, we examined the effects of ethylene, which induced the formation of submerged-type leaves on aerial shoots at the relatively high culture-temperature of 28 degrees C. At 23 degrees C, ethylene induced both cell elongation and reduction in the number of epidermal cells across the leaf transverse axis, while cell elongation was not observed at 28 degrees C. Moreover, both submergence and ethylene treatment induced a change in the arrangement of cortical microtubules (MTs) in epidermal cells of developing leaves at 23 degrees C. Such changes in the arrangement of MTs was not induced at 28 degrees C. Factors involved in the temperature-sensitive response to ethylene would be critical for temperature-sensitive heterophyllous leaf formation in L. arcuata.  相似文献   

2.
Kuwabara A  Ikegami K  Koshiba T  Nagata T 《Planta》2003,217(6):880-887
In this study, we examined the effects of ethylene and abscisic acid (ABA) upon heterophyllous leaf formation of Ludwigia arcuata Walt. Treatment with ethylene gas resulted in the formation of submerged-type leaves on terrestrial shoots of L. arcuata, while treatments with ABA induced the formation of terrestrial-type leaves on submerged shoots. Measurement of the endogenous ethylene concentration of submerged shoots showed that it was higher than that of terrestrial ones. In contrast, the endogenous ABA concentration of terrestrial shoots was higher than that of submerged ones. To clarify interactions of ethylene and ABA, simultaneous additions of these two plant hormones were examined. When L. arcuata plants were treated with these two plant hormones, the effects of ABA dominated that of ethylene, resulting in the formation of terrestrial-type leaves. This suggests that ABA may be located downstream of ethylene in signal transduction chains for forming heterophyllous changes. Further, ethylene treatment induced the reduction of endogenous levels of ABA in tissues of L. arcuata, resulting in the formation of submerged-type leaves. Thus the effects of ethylene and ABA upon heterophyllous leaf formation are discussed in relationship to the cross-talk between signaling pathways of ethylene and ABA.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - L/W ratio ratio of leaf length to width - LN leaf number - GAs gibberellins  相似文献   

3.
Kuwabara A  Nagata T 《Planta》2006,224(4):761-770
When heterophyllous plants of Ludwigia arcuata Walt. (Onagraceae) were transferred from aerial condition to submergence, young developing leaves were matured into leaves with intermediate shape between aerial-type and submerged-type, showing spatulate shape (spoon-shaped). This change was also induced by the exposure of plants to ethylene. On the other hand, when the plants were transferred from submergence to aerial conditions, young developing leaves were matured into intermediate-type leaves with elliptic shape (spearhead shape). Anatomical analysis revealed that the formation of spatulate leaf was caused by the reduction of the number of epidermal cells aligned in the leaf transverse direction in the basal region of the leaf while the tip regions remained as before and did not respond to this treatment. During development, the ethylene-induced spatulate leaves showed that three types of alterations in epidermal cell division were involved in this process. Changes in the distribution of cell divisions in leaf lamina were detected by the first day of ethylene exposure, and changes in the orientation of cell division planes were detected by the second day. However, changes in the number of cells aligned in the leaf transverse direction were not detected by this time. Three days after ethylene exposure, frequency of cell divisions changed, and by the time changes of cell numbers aligned in the leaf transverse direction were observed. Thus, the formation of intermediate-type leaves in L. arcuata was ascribed to the alterations of cell division patterns which was induced by ethylene.  相似文献   

4.
Plants grown in calcareous, high pH soils develop Fe deficiency chlorosis. While the physiological parameters of Fe-deficient leaves have been often investigated, there is a lack of information regarding structural leaf changes associated with such abiotic stress. Iron-sufficient and Fe-deficient pear and peach leaves have been studied, and differences concerning leaf epidermal and internal structure were found. Iron deficiency caused differences in the aspect of the leaf surface, which appeared less smooth in Fe-deficient than in Fe-sufficient leaves. Iron deficiency reduced the amount of soluble cuticular lipids in peach leaves, whereas it reduced the weight of the abaxial cuticle in pear leaves. In both plant species, epidermal cells were enlarged as compared to healthy leaves, whereas the size of guard cells was reduced. In chlorotic leaves, bundle sheaths were enlarged and appeared disorganized, while the mesophyll was more compacted and less porous than in green leaves. In contrast to healthy leaves, chlorotic leaves of both species showed a significant transient opening of stomata after leaf abscission (Iwanoff effect), which can be ascribed to changes found in epidermal and guard cells. Results indicate that Fe-deficiency may alter the barrier properties of the leaf surface, which can significantly affect leaf water relations, solute permeability and pest and disease resistance.  相似文献   

5.
Many understory plants rely on diffuse light for photosynthesis because direct light is usually scattered by upper canopy layers before it strikes the forest floor. There is a considerable gap in the literature concerning the interaction of direct and diffuse light with leaves. Some understory plants have well-developed lens-shaped epidermal cells, which have long been thought to increase the absorption of diffuse light. To assess the role of epidermal cell shape in capturing direct vs. diffuse light, we measured leaf reflectance and transmittance with an integrating sphere system using leaves with flat (Begonia erythrophylla, Citrus reticulata, and Ficus benjamina) and lens-shaped epidermal cells (B. bowerae, Colocasia esculenta, and Impatiens velvetea). In all species examined, more light was absorbed when leaves were irradiated with direct as opposed to diffuse light. When leaves were irradiated with diffuse light, more light was transmitted and more was reflected in both leaf types, resulting in absorptance values 2-3% lower than in leaves irradiated with direct light. These data suggest that lens-shaped epidermal cells do not aid the capture of diffuse light. Palisade and mesophyll cell anatomy and leaf thickness appear to have more influence in the capture and absorption of light than does epidermal cell shape.  相似文献   

6.
A combined system has been developed in which epidermal cell turgor, leaf water potential, and gas exchange were determined for transpiring leaves of Tradescantia virginiana L. Uniform and stable values of turgor were observed in epidermal cells (stomatal complex cells were not studied) under stable environmental conditions for both upper and lower epidermises. The changes in epidermal cell turgor that were associated with changes in leaf transpiration were larger than the changes in leaf water potential, indicating the presence of transpirationally induced within-leaf water potential gradients. Estimates of 3 to 5 millimoles per square meter per second per megapascal were obtained for the value of within-leaf hydraulic conductivity. Step changes in atmospheric humidity caused rapid changes in epidermal cell turgor with little or no initial change in stomatal conductance, indicating little direct relation between stomatal humidity response and epidermal water status. The significance of within-leaf water potential gradients to measurements of plant water potential and to current hypotheses regarding stomatal response to humidity is discussed.  相似文献   

7.
Silicon has been considered to be important for normal growthand development of the rice plant (Oryza sativa L.). To investigatethe physiological function of deposited silica in rice leaves,the hypothesis that silica bodies in the leaf epidermal systemmight act as a ‘window’ to facilitate the transmissionof light to photosynthetic mesophyll tissue was tested. Thesilica content of leaves increased with supplied silicon andwas closely correlated with the number of silica bodies perunit leaf area in the epidermal system. There was a significantdifference in silica deposition and formation of silica bodiesbetween Si-treated and non-treated leaves; silicon was polymerizedinside the silica cells and bulliform cells of the epidermis,in Si-treated leaves. Although the ‘windows’ wereonly formed in leaves with applied silicon, optical propertiesof leaf transmittance, reflectance and absorptance spectra inSi-treated and non-treated leaves were almost equal. Furthermore,light energy use efficiency and quantum yield of Si-treatedleaves were less than in leaves not containing silica bodies.Thus, silica bodies, at least based on the data, do not functionas windows in rice leaves. Key words: Silicon, window hypothesis, rice, optical property, quantum yield  相似文献   

8.
Leaf morphology and anatomy during vegetative phase change was compared in bluegrass, rice, and maize. Maize juvenile leaves are coated with epicuticular wax, lack specialized cells, such as trichomes and bulliform cells, and epidermal cell walls stain a uniform purple color. Adult maize leaves are pubescent, lack epicuticular waxes, and have crenulated epidermal cell walls that stain purple and blue. All bluegrass and rice blades are pubescent, coated with epicuticular waxes, and show purple and blue wall staining. In all three grasses, blade width steadily increases at each node until a threshold size is achieved several nodes before reproductive competence is acquired. Blade-to-sheath length showed a similar trend of continuous change followed by discontinuous change prior to reproduction. Analysis of leaf development demonstrated that maize primordia initiate more rapidly relative to blade and sheath growth than do either bluegrass or rice. We conclude that leaf shape, as defined by blade width and blade-to-sheath ratio, is a reliable indicator of phase, whereas anatomy is not a universal indicator of phase change in the grasses. We speculate that different growth patterns among these grasses may be attributed to changes in the timing of embryonic and postembryonic development.  相似文献   

9.
以宁夏枸杞为材料,采用超薄切片技术制备样品,应用光学显微镜和透射电镜分析了不同浓度NaCl胁迫条件下宁夏枸杞叶和幼根显微及超微结构的变化。结果表明:随着NaCl胁迫的加重,(1)叶片上表皮细胞增厚,栅栏组织细胞出现缩短现象,排列疏松且紊乱;幼根的初生结构无明显变化。(2)叶片栅栏组织中叶绿体不再紧靠在细胞膜上,叶绿体双层膜破坏,基粒片层松散排列,杂乱无章,出现膨胀和空泡现象,淀粉粒和嗜锇颗粒增多,叶肉细胞中线粒体发生轻微变化;幼根中皮层薄壁细胞线粒体形状发生改变,结构破坏,内膜和外膜模糊甚至破裂,大多数嵴模糊,出现空泡现象;细胞核解体,基质外溢。研究表明, 不同浓度的NaCl胁迫对宁夏枸杞叶片和幼根细胞的显微及超微结构影响不同,NaCl浓度大于200 mmol/L时,宁夏枸杞叶片和幼根细胞的显微及超微结构发生了明显变化,且叶肉细胞中线粒体的变化没有叶绿体的变化显著,推测叶肉细胞中线粒体的耐盐性比叶绿体强。  相似文献   

10.
枫香(Liquidambar formosana)因其叶片入秋后逐渐变红而极具观赏价值,是优良的景观生态树种。为了解枫香叶片结构变化与叶色的关系,该文通过连续监测枫香叶片变红过程中组织结构、光合特性及色素含量的变化,分析叶片结构与其光合特性和色素的关系。结果表明:(1)叶片变色过程中,表皮细胞均为椭圆形,紧密排列,未观察到明显的细胞变异,表面未附着绒毛和蜡质,且上表皮细胞与栅栏组织细胞间排列紧密,未出现较大的气室。(2)随着叶片逐渐变红,叶片结构变化显著,其中叶片、上表皮、栅栏组织和海绵组织厚度及气孔开度均逐渐减小,而气孔器长和宽、单个气孔器面积则逐渐增大。(3)随着叶片结构的变化,其叶绿素含量逐渐减少,致使净光合速率逐渐减小,在出现光破坏时,叶片通过在栅栏组织细胞液泡内合成花色苷来自我保护,而大量的花色苷致使叶片表面呈现红色。综上认为,叶绿素含量降低,花色素苷大量积累是导致枫香叶片变红的直接原因,而枫香叶色变红则是其一系列生理结构特征综合作用的结果。  相似文献   

11.
Measurements of the growth and water relations of expanding grape (Vitis vinifera L.) leaves have been used to determine the relationship between leaf expansion rate and leaf cell turgor. Direct measurement of turgor on the small (approximately 15 micrometer diameter) epidermal cells over the midvein of expanding grape leaves was made possible by improvements in the pressure probe technique. Leaf expansion rate and leaf water status were perturbed by environmentally induced changes in plant transpiration. After establishing a steady state growth rate, a step decrease in plant transpiration resulted in a rapid and large increase in leaf cell turgor (0.25 megapascal in 5 minutes), and leaf expansion rate. Subsequently, leaf expansion rate returned to the original steady state rate with no change in cell turgor. These results indicate that the expansion rate of leaves may not be strongly related to the turgor of the leaf cells, and that substantial control of leaf expansion rate, despite changes in turgor, may be part of normal plant function. It is suggested that a strictly physical interpretation of the parameters most commonly used to describe the relationship between turgor and growth in plant cells (cell wall extensibility and yield threshold) may be inappropriate when considering the process of plant cell expansion.  相似文献   

12.
Silicon has been considered to be important for normal growth and development of the rice plant (Oryza sativa L.). To investigate the physiological function of deposited silica in rice leaves, the hypothesis that silica bodies in the leaf epidermal system might act as a 'window' to facilitate the transmission of light to photosynthetic mesophyll tissue was tested. The silica content of leaves increased with supplied silicon and was closely correlated with the number of silica bodies per unit leaf area in the epidermal system. There was a significant difference in silica deposition and formation of silica bodies between Si-treated and non-treated leaves; silicon was polymerized inside the silica cells and bulliform cells of the epidermis, in Si-treated leaves. Although the 'windows' were only formed in leaves with applied silicon, optical properties of leaf transmittance, reflectance and absorptance spectra in Si-treated and non-treated leaves were almost equal. Furthermore, light energy use efficiency and quantum yield of Si-treated leaves were less than in leaves not containing silica bodies. Thus, silica bodies, at least based on the data, do not function as windows in rice leaves.  相似文献   

13.
Phenotypic plasticity is central to the persistence of populations and a key element in the evolution of species and ecological interactions, but its mechanistic basis is poorly understood. This article examines the hypothesis that epigenetic variation caused by changes in DNA methylation are related to phenotypic plasticity in a heterophyllous tree producing two contrasting leaf types. The relationship between mammalian browsing and the production of prickly leaves was studied in a population of Ilex aquifolium (Aquifoliaceae). DNA methylation profiles of contiguous prickly and nonprickly leaves on heterophyllous branchlets were compared using a methylation‐sensitive amplified polymorphism (MSAP) method. Browsing and the production of prickly leaves were correlated across trees. Within heterophyllous branchlets, pairs of contiguous prickly and nonprickly leaves differed in genome‐wide DNA methylation. The mean per‐marker probability of methylation declined significantly from nonprickly to prickly leaves. Methylation differences between leaf types did not occur randomly across the genome, but affected predominantly certain specific markers. The results of this study, although correlative in nature, support the emerging three‐way link between herbivory, phenotypic plasticity and epigenetic changes in plants, and also contribute to the crystallization of the consensus that epigenetic variation can complement genetic variation as a source of phenotypic variation in natural plant populations. © 2012 The Linnean Society of London  相似文献   

14.
Aim Heterophylly is present in many plant species on oceanic islands. Almost all of these plants are island endemics, and heterophylly may have evolved as a response to feeding from large insular browsers such as giant tortoises and flightless birds. We tested this anti‐browser hypothesis by feeding Aldabra giant tortoises (Geochelone gigantea) with leaves of native Mauritian plants to see if they distinguished between juvenile and adult leaves and between heteophyllous and homophyllous species. Location Mauritius. Methods In a choice experiment we recorded feeding response of four captive Aldabra giant tortoises to 10 species of Mauritian plants, of which seven were heterophyllous and three homophyllous. Results In general, juvenile leaves of heterophyllous species showed convergence in shape and midrib coloration. Homophyllous foliage was preferred to heterophyllous, and among heterophyllous species adult foliage was preferred to juvenile. Main conclusions Several Mascarene heterophyllous plants show convergence in morphology of juvenile leaves and these are avoided by giant tortoises. This indicates a strong selection history from large browsers such as the giant tortoises. The Mascarene example is in accordance with several other comparable cases of plant‐large browser interactions from other archipelagos.  相似文献   

15.
Summary Abscission in the leaf rachis of Sambucus nigra L. is preceded by a positional differentiation of zone cells that enlarge and separate in response to ethylene but not to auxin. These cells are absent from youngest leaves, and such leaves do not abscind even in ethylene; other cells of the immature rachii will enlarge in response to auxin. These two classes of target cells are always recognisable by their opposing responses to auxin and ethylene. Prior to separation zone cells exposed to ethylene show considerable activation of the cytoplasm, many polysomes, elongate endoplasmic reticulum and highly dilated dictyosomes with many associated vesicles. Treatment with auxin precludes these changes, and abscission is always retarded: high levels of ethylene must be added to overcome the auxin inhibition. The differentiation of zone cells and their ethylene-stimulated growth and activation are prerequisites for rachis abscission in Sambucus. Such cell development may be of general occurrence prior to organ abscission in plants.Abbreviation IAA indole-3yl-acetic acid  相似文献   

16.
BACKGROUND AND AIMS: The inverse relationship between the number of stomata and atmospheric CO2 levels observed in different plant species is increasingly used for reconstructions of past CO2 concentrations. To validate this relationship, the potential influence of other environmental conditions and ontogenetical development stage on stomatal densities must be investigated as well. Quantitative data on the changes in stomatal density of conifers in relation to leaf development is reported. METHODS: Stomatal frequency and epidermal cells of Tsuga heterophylla needles during different stages of budburst were measured using computerized image analysis systems on light microscope slides. KEY RESULTS: Stomata first appear in the apical region and subsequently spread basipetally towards the needle base during development. The number of stomatal rows on a needle does not change during ontogeny, but stomatal density decreases nonlinearly with increasing needle area, until about 50 % of the final needle area. The total number of stomata on the needle increases during the entire developmental period, indicating that stomatal and epidermal cell formation continues until the needle has matured completely. CONCLUSIONS: Epidermal characteristics in developing conifer needles appear to be fundamentally different from angiosperm dicot leaves, where in general leaf expansion in the final stages is due to cell expansion rather than cell formation. The lack of further change in either stomatal density or stomatal density per millimetre needle length (the stomatal characteristic most sensitive to CO2 in conifers) in the final stages of leaf growth indicates that in conifers the stage of leaf maturation would not influence CO2 reconstructions based on stomatal density.  相似文献   

17.
A group of sunflower lines that exhibit a range of leaf Na + concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na + accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt‐treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na+ accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na+‐including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na+‐excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw‐puzzle shape, whereas in treated plants, they tended to retain closer‐to‐circular shapes and a lower number of lobes.  相似文献   

18.
BACKGROUND: Flooding causes substantial stress for terrestrial plants, particularly if the floodwater completely submerges the shoot. The main problems during submergence are shortage of oxygen due to the slow diffusion rates of gases in water, and depletion of carbohydrates, which is the substrate for respiration. These two factors together lead to loss of biomass and eventually death of the submerged plants. Although conditions under water are unfavourable with respect to light and carbon dioxide supply, photosynthesis may provide both oxygen and carbohydrates, resulting in continuation of aerobic respiration. SCOPE: This review focuses on evidence in the literature that photosynthesis contributes to survival of terrestrial plants during complete submergence. Furthermore, we discuss relevant morphological and physiological responses of the shoot of terrestrial plant species that enable the positive effects of light on underwater plant performance. CONCLUSIONS: Light increases the survival of terrestrial plants under water, indicating that photosynthesis commonly occurs under these submerged conditions. Such underwater photosynthesis increases both internal oxygen concentrations and carbohydrate contents, compared with plants submerged in the dark, and thereby alleviates the adverse effects of flooding. Additionally, several terrestrial species show high plasticity with respect to their leaf development. In a number of species, leaf morphology changes in response to submergence, probably to facilitate underwater gas exchange. Such increased gas exchange may result in higher assimilation rates, and lower carbon dioxide compensation points under water, which is particularly important at the low carbon dioxide concentrations observed in the field. As a result of higher internal carbon dioxide concentrations in submergence-acclimated plants, underwater photorespiration rates are expected to be lower than in non-acclimated plants. Furthermore, the regulatory mechanisms that induce the switch from terrestrial to submergence-acclimated leaves may be controlled by the same pathways as described for heterophyllous aquatic plants.  相似文献   

19.
Morphologically heterophyllous species of Potamogeton also commonly display biochemical heterophylly with respect to flavonoid compounds. Generally, floating leaves contain an assortment of flavonoids, whereas submersed leaves often exhibit reduced flavonoid profiles. In strictly submersed (homophyllous) species, two patterns occur. Linear-leaved species have few flavonoids and their biochemical profiles resemble those of submersed leaves of heterophyllous species. Broad-leaved homophyllous species possess flavonoid profiles more similar to those of the floating leaves of heterophyllous species. Numerical analysis of these chemical data is consistent with phylogenetic relationships within the genus derived independently on the basis of morphological and chromosomal data. Glycoflavones, which are probably maintained in floating leaves because of their UV filtering ability, exhibit the most pronounced biochemical heterophylly in Potamogeton. The lack of glycoflavones in submersed leaves of heterophyllous species and in linear-leaved homophyllous species is attributable to the ability of naturally colored water to significantly absorb harmful UV radiation. These observations provide strong support for earlier hypotheses suggesting the importance of flavonoid evolution in the conquest of exposed terrestrial habitats by plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号