首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
APOBEC3G (A3G) restricts HIV-1 infection by catalyzing processive C --> U deaminations on single-stranded DNA (ssDNA) with marked 3' --> 5' deamination polarity. Here we show that A3G exists in oligomeric states whose composition is dictated primarily by interactions with DNA, with salt playing an important, yet secondary, role. Directional deaminations correlate with the presence of dimers, tetramers, and larger oligomers observed by atomic force microscopy, and random deaminations appear to correlate mainly with monomers. The presence of a 30-nt weakly deaminated "dead" zone located at the 3'-ssDNA end implies the presence of a preferred asymmetric direction for A3G catalysis. Single turnover reaction rates reveal a salt-dependent inhibition of C deamination toward the 3'-ssDNA region, offering a molecular basis underlying A3G deamination polarity. Presteady state analysis demonstrates rapid diffusion-limited A3G-ssDNA binding, a slower salt-dependent conformational change, possibly indicative of DNA wrapping, and long (5-15 min) protein-DNA complex lifetimes. We suggest that diverse A3G oligomerization modes contribute to the human immunodeficiency virus, type 1, proviral DNA mutational bias.  相似文献   

8.
9.
10.
In the pairing reaction between circular gapped and fully duplex DNA, RecA protein first polymerizes on the gapped DNA to form a nucleoprotein filament. Conditions that removed the formation of secondary structure in the gapped DNA, such as addition of Escherichia coli single-stranded DNA binding protein or preincubation in 1 mM-MgCl2, optimized the binding of RecA protein and increased the formation of joint molecules. The gapped duplex formed stable joints with fully duplex DNA that had a 5' or 3' terminus complementary to the single-stranded region of the gapped molecule. However, the joints formed had distinct properties and structures depending on whether the complementary terminus was at the 5' or 3' end. Pairing between gapped DNA and fully duplex linear DNA with a 3' complementary terminus resulted in strand displacement, symmetric strand exchange and formation of complete strand exchange products. By contrast, pairing between gapped and fully duplex DNA with a 5' complementary terminus produced a joint that was restricted to the gapped region; there was no strand displacement or symmetric strand exchange. The joint formed in the latter reaction was likely a three-stranded intermediate rather than a heteroduplex with the classical Watson-Crick structure. We conclude that, as in the three-strand reaction, the process of strand exchange in the four-strand reaction is polar and progresses in a 5' to 3' direction with respect to the initiating strand. The present study provides further evidence that in both three-strand and four-strand systems the pairing and strand exchange reactions share a common mechanism.  相似文献   

11.
For hepadnaviruses, the RNA primer for plus-strand DNA synthesis is generated by the final RNase H cleavage of the pregenomic RNA at an 11 nt sequence called DR1 during the synthesis of minus-strand DNA. This RNA primer initiates synthesis at one of two distinct sites on the minus-strand DNA template, resulting in two different end products; duplex linear DNA or relaxed circular DNA. Duplex linear DNA is made when initiation of synthesis occurs at DR1. Relaxed circular DNA, the major product, is made when the RNA primer translocates to the sequence complementary to DR1, called DR2 before initiation of DNA synthesis. We studied the mechanism that determines the site of the final RNase H cleavage in hepatitis B virus (HBV). We showed that the sites of the final RNase H cleavage are always a fixed number of nucleotides from the 5' end of the pregenomic RNA. This finding is similar to what was found previously for duck hepatitis B virus (DHBV), and suggests that all hepadnaviruses use a similar mechanism. Also, we studied the role of complementarity between the RNA primer and the acceptor site at DR2 in HBV. By increasing the complementarity, we were able to increase the level of priming at DR2 over that seen in the wild-type virus. This finding suggests that the level of initiation of plus-strand DNA synthesis at DR2 is sub-maximal for wild-type HBV. Finally, we studied the role of the sequence at the 5' end of the RNA primer that is outside of the DR sequence. We found that substitutions or insertions in this region affected the level of priming at DR1 and DR2.  相似文献   

12.
Topoisomerase IB catalyzes recombinogenic DNA strand transfer reactions in vitro and in vivo. Here we characterize a new pathway of topoisomerase-mediated DNA ligation in vitro (flap ligation) in which vaccinia virus topoisomerase bound to a blunt-end DNA joins the covalently held strand to a 5' resected end of a duplex DNA containing a 3' tail. The joining reaction occurs with high efficiency when the sequence of the 3' tail is complementary to that of the scissile strand immediately 5' of the cleavage site. A 6-nucleotide segment of complementarity suffices for efficient flap ligation. Invasion of the flap into the duplex apparently occurs while topoisomerase remains bound to DNA, thereby implying a conformational flexibility of the topoisomerase clamp around the DNA target site. The 3' flap acceptor DNA mimics a processed end in the double-strand-break-repair recombination pathway. Our findings suggest that topoisomerase-induced breaks may be rectified by flap ligation, with ensuing genomic deletions or translocations.  相似文献   

13.
14.
15.
16.
17.
Initiation of genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) replicase in vitro requires a 26-nucleotide (nt) RNA sequence at the 3' end of the minus-strand RNA and a nontemplated nucleotide 3' of the initiation cytidylate [ Sivakumaran, K. and Kao, C.C. (1999) J. Virol. 64 , 6415–6423]. At the 5' end of this RNA is a 9-nt sequence called the cB box, the complement of the previously defined B box. The cB box can not be functionally replaced by the B box and has specific positional and sequence requirements. The portion of the cB box that is required for RNA synthesis in vitro is well-conserved in species in the Bromoviridae family. An equivalent RNA from Cucumber mosaic virus was unable to direct efficient RNA synthesis by the BMV replicase until the cB box was positioned at the same site relative to the BMV RNA and guanylates were present at positions +6 and +7 from the initiation cytidylate. These results further define the elements required for the recognition and initiation of viral genomic plus-strand RNA synthesis and suggest that a sequence important for minus-strand RNA synthesis is also required for plus-strand RNA synthesis.  相似文献   

18.
Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA.  相似文献   

19.
A duplication of the polypurine tract (PPT) at the center of the human immunodeficiency virus type 1 (HIV-1) genome (the cPPT) has been shown to prime a separate plus-strand initiation and to result in a plus-strand displacement (DNA flap) that plays a role in nuclear import of the viral preintegration complex. Feline immunodeficiency virus (FIV) is a lentivirus that infects nondividing cells, causes progressive CD4(+) T-cell depletion, and has been used as a substrate for lentiviral vectors. However, the PPT sequence is not duplicated elsewhere in the FIV genome and a central plus-strand initiation or strand displacement has not been identified. Using Southern blotting of S1 nuclease-digested FIV preintegration complexes isolated from infected cells, we detected a single-strand discontinuity at the approximate center of the reverse-transcribed genome. Primer extension analyses assigned the gap to the plus strand, and mapped the 5' terminus of the downstream (D+) segment to a guanine residue in a purine-rich tract in pol (AAAAGAAGAGGTAGGA). RACE experiments then mapped the 3' terminus of the upstream plus (U+)-strand segment to a T nucleotide located 88 nucleotides downstream of the D+ strand 5' terminus, thereby identifying the extent of D+ strand displacement and the central termination sequence of this virus. Unlike HIV, the FIV cPPT is significantly divergent in sequence from its 3' counterpart (AAAAAAGAAAAAAGGGTGG) and contains one and in some cases two pyrimidines. An invariant thymidine located -2 to the D+ strand origin is neither required nor optimal for codon usage at this position. Although the mapped cPPTs of FIV and HIV-1 act in cis, they encode homologous amino acids in integrase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号