首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The interaction of the human immunodeficiency virus type 1 (HIV-1) nucleoprotein complex with the cell nuclear import machinery is necessary for viral replication in macrophages and for the establishment of infection in quiescent T lymphocytes. The karyophilic properties of two viral proteins, matrix (MA) and Vpr, are keys to this process. Here, we show that an early step of HIV-1 nuclear import is the recognition of the MA nuclear localization signal (NLS) by Rch1, a member of the karyopherin-alpha family. Furthermore, we demonstrate that an N-terminally truncated form of Rch1 which binds MA but fails to localize to the nucleus efficiently blocks MA- but not Vpr-mediated HIV-1 nuclear import. Correspondingly, NLS peptide inhibits the nuclear migration of MA but not that of Vpr and prevents the infection of terminally differentiated macrophages by vpr-defective virus but not wild-type virus. These results are consistent with a model in which Rch1 or another member of the karyopherin-alpha family, through the recognition of the MA NLS, participates in docking the HIV-1 nucleoprotein complex at the nuclear pore. In addition, our data suggest that Vpr governs HIV-1 nuclear import through a distinct pathway.  相似文献   

4.
5.
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) causes AIDS dementia complex (ADC) in certain infected individuals. Recent studies have suggested that patients with ADC have an increased incidence of neuronal apoptosis leading to neuronal dropout. Of note, a higher level of the HIV-1 accessory protein Vpr has been detected in the cerebrospinal fluid of AIDS patients with neurological disorders. Moreover, extracellular Vpr has been shown to form ion channels, leading to cell death of cultured rat hippocampal neurons. Based on these previous findings, we first investigated the apoptotic effects of the HIV-1 Vpr protein on the human neuronal precursor NT2 cell line at a range of concentrations. These studies demonstrated that apoptosis induced by both Vpr and the envelope glycoprotein, gp120, occurred in a dose-dependent manner compared to protein treatment with HIV-1 integrase, maltose binding protein (MBP), and MBP-Vpr in the undifferentiated NT2 cells. For mature, differentiated neurons, apoptosis was also induced in a dose-dependent manner by both Vpr and gp120 at concentrations ranging from 1 to 100 ng/ml, as demonstrated by both the terminal deoxynucleotidyltransferase (Tdt)-mediated dUTP-biotin nick end labeling and Annexin V assays for apoptotic cell death. In order to clarify the intracellular pathways and molecular mechanisms involved in Vpr- and gp120-induced apoptosis in the NT2 cell line and differentiated mature human neurons, we then examined the cellular lysates for caspase-8 activity in these studies. Vpr and gp120 treatments exhibited a potent increase in activation of caspase-8 in both mature neurons and undifferentiated NT2 cells. This suggests that Vpr may be exerting selective cytotoxicity in a neuronal precursor cell line and in mature human neurons through the activation of caspase-8. These data represent a characterization of Vpr-induced apoptosis in human neuronal cells, and suggest that extracellular Vpr, along with other lentiviral proteins, may increase neuronal apoptosis in the CNS. Also, identification of the intracellular activation of caspase-8 in Vpr-induced apoptosis of human neuronal cells may lead to therapeutic approaches which can be used to combat HIV-1-induced neuronal apoptosis in AIDS patients with ADC.  相似文献   

6.
7.
D Dedera  L Ratner 《Journal of virology》1991,65(11):6129-6136
The mechanism of human immunodeficiency virus type 1 (HIV-1) cytopathicity is poorly understood and might involve formation of multinucleated giant cells (syncytia), single-cell lysis, or both. In order to determine the contributions of the fusion domain to syncytium formation, single-cell lysis, and viral infectivity and to clarify the molecular details of these events, insertion mutations were made in the portion of env encoding this sequence in the functional HIV-1 proviral clone HXB2. Viruses produced from these mutant clones were found to have a partial (F3) or complete (F6) loss of syncytium-forming ability in acutely infected CEM, Sup T1, and MT4 T-cell lines. During the early stage of acute infection by F6 virus, there was a loss of the syncytial cytopathic effect, which resulted in increased cell viability, and a 1.9- to 2.6-fold increase in virus yield in the cell lines tested. In the late stage of acute infection, the single-cell cytopathic effect of F6 virus was similar to that of the parental HXB2 virus. The F3 and F6 viruses were also found to have a 1.7- to 43-fold reduction in infectivity compared with the HXB2 virus. The mutant F3 and F6 and parental HXB2 envelope proteins were expressed in vaccinia virus, and the mutant envelope proteins were observed to be defective in their ability to form syncytia. BSC-40 cells infected with vaccinia virus recombinants revealed no differences in kinetics of cleavage, cell surface expression, or CD4 binding capacity of the mutant and parental envelope proteins. These results demonstrate that a loss of syncytium formation results in an attenuation of infectivity and a loss of the syncytial cytopathic effect without a loss of single-cell lysis. These mutants may reflect in tissue culture the changes observed in the HIV isolates in vivo during disease progression, which exhibit marked differences in syncytium production.  相似文献   

8.
The chemokine receptor CCR5 is the major fusion coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). To define the structures of CCR5 that can support envelope (Env)-mediated membrane fusion, we analyzed the activity of homologs, chimeras, and mutants of human CCR5 in a sensitive gene reporter cell-cell fusion assay. Simian, but not murine, homologs of CCR5 were fully active as HIV-1 fusion coreceptors. Chimeras between CCR5 and divergent chemokine receptors demonstrated the existence of two distinct regions of CCR5 that could be utilized for Env-mediated fusion, the amino-terminal domain and the extracellular loops. Dual-tropic Env proteins were particularly sensitive to alterations in the CCR5 amino-terminal domain, suggesting that this domain may play a pivotal role in the evolution of coreceptor usage in vivo. We identified individual residues in both functional regions, Asp-11, Lys-197, and Asp-276, that contribute to coreceptor function. Deletion of a highly conserved cytoplasmic motif rendered CCR5 incapable of signaling but did not abrogate its ability to function as a coreceptor, implying the independence of fusion and G-protein-mediated chemokine receptor signaling. Finally, we developed a novel monoclonal antibody to CCR5 to assist in future studies of CCR5 expression.  相似文献   

9.
10.
11.
Simian immunodeficiency virus from rhesus macaques (SIVmac), like human immunodeficiency virus type 1 (HIV-1), encodes a transactivator (tat) which stimulates long terminal repeat (LTR)-directed gene expression. We performed cotransfection assays of SIVmac and HIV-1 tat constructs with LTR-CAT reporter plasmids. The primary effect of transactivation for both SIVmac and HIV-1 is an increase in LTR-directed mRNA accumulation. The SIVmac tat gene product partially transactivates an HIV-1 LTR, whereas the HIV-1 tat gene product fully transactivates an SIVmac LTR. Significant transactivation is achieved by the product of coding exon 1 of the HIV-1 tat gene; however, inclusion of coding exon 2 results in a further increase in mRNA accumulation. In contrast, coding exon 2 of the SIVmac tat gene is required for significant transactivation. These results imply that the tat proteins of SIVmac and HIV-1 are functionally similar but not interchangeable. In addition, an in vitro-generated mutation in SIVmac tat disrupts splicing at the normal splice acceptor site at the beginning of coding exon 2 and activates a site approximately 15 nucleotides downstream. The product of this splice variant stimulates LTR-directed gene expression. This alternative splice acceptor site is also used by a biologically active provirus with an efficiency of approximately 5% compared with the upstream site. These data suggest that a novel tat protein is encoded during the course of viral infection.  相似文献   

12.
Retroviral capsid (CA) proteins contain a uniquely conserved stretch of 20 amino acids which has been named the major homology region (MHR). To examine the role of this region in human immunodeficiency virus type 1 morphogenesis and replication, four highly conserved positions in the MHR were individually altered by site-directed mutagenesis. Conservative substitution of two invariant residues (glutamine 155 and glutamic acid 159) abolished viral replication and significantly reduced the particle-forming ability of the mutant gag gene products. Conservative substitution of the third invariant residue in the MHR (arginine 167) or of an invariably aromatic residue (tyrosine 164) had only a moderate effect. However, removal of the extended side chains of these amino acids by substitution with alanine prevented viral replication and affected virion morphogenesis. The replacement of tyrosine 164 with alanine substantially impaired viral particle production. By contrast, the substitution of arginine 167 with alanine had only a two- to threefold effect on particle yield but led to the formation of aberrant core structures. The MHR mutant which were severely defective for particle production had a dominant negative effect on particle formation by the wild-type Gag product. The role of the MHR in the incorporation of the Gag-Pol precursor was examined by expressing the Gag and Gag-Pol polyproteins individually from separate plasmids. Only when the two precursor polyproteins were coexpressed did processed Gag and Pol products appear in the external medium. The appearance of these products was unaffected or only moderately affected by substitutions in the MHR of the Gag-Pol precursor, suggesting that the mutant Gag-Pol precursors were efficiently incorporated into viral particles. The results of this study indicate that specific residues within the MHR are required both for human immunodeficiency virus type 1 particle assembly and for the correct assembly of the viral core. However, mutant Gag and Gag-Pol polyproteins with substitutions in the MHR retained the ability to interact with wild-type Gag protein.  相似文献   

13.
Biological effects of HIV-1 Vpr on CD4(+) cells were studied by an infection system. High-titered HIV-1 stocks pseudotyped with vesicular stomatitis virus G protein were prepared and used to inoculate into CD4(+ )T cells at high multiplicity of infection. Both cell- and virion-associated Vpr were demonstrated to arrest the cell cycle at the G2/M phase, and to induce cell apoptosis. Of note, morphologically apoptotic cells were shown to be arrested at the G2/M stage. No appreciable effect of Vpr on the anti-Fas antibody-mediated apoptosis was observed in this system.  相似文献   

14.
The major core protein (p25) of the human immunodeficiency virus type 1 (HIV-1) was characterized by two-dimensional-gel isoelectric focusing. The p25 detectable in HIV-1-infected cells is composed of four species with related isoelectric points. This is due in part to the phosphorylated state of p25. The four species of p25 are expressed on the cell surfaces of infected cells, but only the two most basic species are incorporated into the HIV-1 virion. These findings emphasize the importance of p25 in understanding infection with HIV and might have implications for the development of vaccines.  相似文献   

15.
Packaging of retroviral RNA is attained through the specific recognition of a cis-acting encapsidation site (located near the 5' end of the viral RNA) by components of the Gag precursor protein. Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) are two lentiviruses that lack apparent sequence similarity in their putative encapsidation regions. We used SIV vectors to determine whether HIV-1 particles can recognize the SIV encapsidation site and functionally propagate SIV nucleic acid. SIV nucleic acid was replicated by HIV-1 proteins. Thus, efficient lentivirus pseudotyping can take place at the RNA level. Direct examination of the RNA contents of virus particles indicated that encapsidation of this heterologous RNA is efficient. Characterization of deletion mutants in the untranslated leader region of SIV RNA indicates that only a very short region at the 5' end of the SIV RNA is needed for packaging. Comparison of this region with the corresponding region of HIV-1 reveals that both are marked by secondary structures that are likely to be similar. Thus, it is likely that a similar higher-order RNA structure is required for encapsidation.  相似文献   

16.
In contrast to infrequent and low-titer cross-neutralization of human immunodeficiency virus type 1 (HIV-1) isolates by HIV-2- and simian immunodeficiency virus (SIV)-positive sera, extensive cross-neutralization of HIV-2NIH-Z, SIVMAC251, and SIVAGM208K occurs with high titer, suggesting conservation of epitopes and mechanism(s) of neutralization. The V3 regions of HIV-2 and SIV isolates, minimally related to the HIV-1 homolog, share significant sequence homology and are immunogenic in monkeys as well as in humans. Whereas the crown of the V3 loop is cross-reactive among HIV-1 isolates and elicits neutralizing antibodies of broad specificity, the SIV and especially HIV-2 crown peptides were not well recognized by cross-neutralizing antisera. V3 loop peptides of HIV-2 isolates did not elicit neutralizing antibodies in mice, guinea pigs, or a goat and together with SIV V3 peptides did not inhibit serum neutralization of HIV-2 and SIV. Thus, the V3 loops of HIV-2 and SIV do not appear to constitute simple linear neutralizing epitopes. In view of the immunogenicity of V3 peptides, the failure of conserved crown peptides to react with natural sera implies a significant role of loop conformation in antibody recognition. Our studies suggest that in addition to their grouping by envelope genetic relatedness, HIV-2 and SIV are neutralized similarly to each other but differently from HIV-1. The use of linear peptides of HIV-2 and SIV as immunogens may require greater attention to microconformation, and alternate subunit approaches may be needed in exploiting these viruses as vaccine models. Such approaches may also be applicable to the HIV-1 system in which conformational epitopes, in addition to the V3 loop, participate in virus neutralization.  相似文献   

17.
The integrase protein from human immunodeficiency virus type 1 (HIV-1) has generally been reported to require Mn2+ for efficient in vitro activity. We have reexamined the divalent metal ion requirements of HIV-1 integrase and find that the protein is capable of promoting efficient 3' processing and DNA strand transfer with either Mn2+ or Mg2+. The metal ion preference depended upon the reaction conditions. HIV-1 integrase displayed significantly less nonspecific nuclease activity in reaction mixtures containing Mg2+ than it did under the previously described reaction conditions with mixtures containing Mn2+.  相似文献   

18.
We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins.  相似文献   

19.
Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4(+) Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.  相似文献   

20.
The human immunodeficiency virus (HIV) genome codes for a trans-activating regulatory protein, tat. Using chemically synthesized tat, it was found that 125I-tat and 125I-tat38-86 specifically bound to rat brain synaptosomal membranes with moderate affinity (K0.5 = 3 microM). Interaction of tat with nerve cells was also revealed by flow cytometry, which showed its binding to rat glioma and murine neuroblastoma cells, using both direct fluorescence with fluorescein isothiocyanate-labeled tat and indirect immunofluorescence assays. This interaction was investigated with electrophysiology using isolated excitable frog muscle fibers and cockroach giant interneuron synapses. tat acted on the cell membrane and induced a large depolarization, accompanied by a decrease in membrane resistance, thereby modifying cell permeability. The neurotoxicity of tat was further demonstrated in vitro, on glioma and neuroblastoma cell growth, as well as by a 51Cr release assay in both tumor cell lines. Interestingly, no hemolytic activity of tat for human erythrocytes was found even when tat was tested at its highly neurotoxic concentration. Experiments in vivo showed that synthetic tat is a potent and lethal neurotoxic agent in mice. The use of tat peptide derivatives showed that basic region from 49 to 57 is necessary and sufficient for binding to cell membranes and toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号