首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity   总被引:20,自引:0,他引:20  
Superoxide dismutase is considered important in protection of aerobes against oxidant damage, and increased tolerance to oxidant stress is associated with induction of this enzyme. However, the importance of superoxide dismutase in this tolerance is not clear because conditions which promote the synthesis of superoxide dismutase likewise affect other antioxidant enzymes and substances. To clarify the role of superoxide dismutase per se in organismal defense against oxidant-generating drugs, we employed Escherichia coli transformed with multiple copies of the gene for bacterial iron superoxide dismutase. These bacteria have greater than ten times the superoxide dismutase activity of wild-type E. coli but, importantly, are normal in other oxidant defense parameters including catalase, peroxidases, glutathione, and glutathione reductase. High superoxide dismutase and control bacteria were exposed to the O2- -generating drug paraquat and to elevated pO2. We find; high superoxide dismutase E. coli are more readily killed by paraquat under aerobic, but not anaerobic, conditions. During exposure to paraquat, high superoxide dismutase E. coli accumulate more H2O2. Coincidentally, the reduced glutathione content of high superoxide dismutase E. coli declines more than in control E. coli. E. coli with high superoxide dismutase activity are also more readily killed by hyperoxia. Interestingly, the susceptibility of the parental and high superoxide dismutase E. coli to killing by exogenous H2O2 is not significantly different. Thus, under these experimental conditions, greatly enhanced superoxide dismutase activity accelerates H2O2 formation. The increased H2O2 probably accounts for the exaggerated sensitivity of high superoxide dismutase bacteria to oxidant-generating drugs. These results support the concept that the product of superoxide dismutase, H2O2, is at least as hazardous as the substrate, O2-. We conclude that effective organismal defense against reactive oxygen species may require balanced increments in antioxidant enzymes and cannot necessarily be improved by increases in the activity of single enzymes.  相似文献   

2.
Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), by in vitro heat shock (41 degrees C), and during incubation of lung slices with the Cu chelator diethyldithiocarbamate, which decreased the activity of Cu,Zn superoxide dismutase. The heat shock-induced increase in Cu,Zn superoxide dismutase developed 2 h later than the induction of heat shock proteins and was not blocked by actinomycin D. The rates of synthesis of both superoxide dismutases were decreased 50% by hypoxia and failed to increase during reoxygenation. During hypoxia the activity of Cu,Zn superoxide dismutase decreased about 50%, but the activity of Mn superoxide dismutase remained unchanged. We conclude that hyperthermia increases the synthesis of Cu,Zn superoxide dismutase, the synthesis of Cu,Zn superoxide dismutase and Mn superoxide dismutase are not coordinately regulated by hyperthermia or by the oxidant stress produced by lowering the activity of Cu,Zn superoxide dismutase, and the synthesis of heat shock proteins and Cu,Zn superoxide dismutase are regulated at different levels of gene expression.  相似文献   

3.
Growth of Escherichia coli B in simple media enriched with Mn(II) resulted in the elevation of the manganese-containing superoxide dismutase, whereas growth in such medium enriched with iron caused increased content of the iron-containing superoxide dismutase. Enrichment of the medium with Co(II), Cu(II), Mo(VI), Zn(II), or Ni(II) had no effect. The inductions of superoxide dismutase by Mn(II) or by Fe(II) were dioxygen dependent, but these metals did not affect the CN- -resistant respiration of E. coli B and did not influence the increase in the CN- -resistant respiration caused by paraquat. Mn(II) and paraquat acted synergistically in elevating the superoxide dismutase content, and Mn(II) reduced the growth inhibition imposed by paraquat, E. coli grown in the complex 3% Trypticase soy broth (BBL Microbiology Systems)-0.5% yeast extract-0.2% glucose medium contained more superoxide dismutase than did cells grown in the simple media and were less responsive to enrichment of the medium with Mn(II) or Fe(II). Nevertheless, in the presence of paraquat, inductions of superoxide dismutase by these metals could be seen even in the Trypticase-yeast extract-glucose medium. On the basis of these observations we propose that the apo-superoxide dismutases may act as autogenous repressors and that Mn(II) and Fe(II) increase the cell content of the corresponding enzymes by speeding the conversion of the apo- to the holoenzymes.  相似文献   

4.
alpha, beta-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme   总被引:18,自引:0,他引:18  
Increasing the intracellular flux of O-2 by incubating aerobic Escherichia coli with paraquat or plumbagin markedly lowered the alpha, beta-dihydroxyisovalerate dehydratase activity detectable in extracts from these cells. This effect was not seen in the absence of dioxygen and was exacerbated by inhibiting protein biosynthesis with chloramphenicol. These effects of paraquat and of plumbagin were both time- and concentration-dependent. Transfer of E. coli from aerobic to anaerobic conditions caused a rebound of the dehydratase activity, in the continued presence of paraquat and of chloramphenicol, indicating the presence of a mechanism for reactivating this enzyme. The instability of the dehydratase activity in cell extracts was exacerbated by selective removal of superoxide dismutase, but not of catalase, by immunoprecipitation. Addition of exogenous superoxide dismutase reversed the effect of immunoprecipitation; whereas catalase or inactive superoxide dismutase were ineffective. We conclude that the dehydratase is inactivated by O-2. This could account for the bacteriostatic effects of dioxygen and of paraquat.  相似文献   

5.
The nucleotide sequence of the iron superoxide dismutase gene from Escherichia coli K12 has been determined. Analysis of the DNA sequence and mapping of the mRNA start reveal a unique promoter and a putative rho-independent terminator, and suggest that the Fe dismutase gene constitutes a monocistronic operon. The gene encodes a polypeptide product consisting of 192 amino acid residues with a calculated Mr of 21,111. The published N-terminal amino acid sequence of E. coli B Fe dismutase (Steinman, H. M., and Hill, R. L. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3725-3729), along with the sequences of seven other peptides reported here, was located in the primary structure deduced from the K12 E. coli gene sequence. A new molecular model for iron dismutase from E. coli, based on the DNA sequence and x-ray data for the E. coli B enzyme at 3.1 A resolution, allows detailed comparison of the structure of the iron enzyme with manganese superoxide dismutase from Thermus thermophilus HB8. The structural similarities are more extensive than indicated by earlier studies and are particularly striking in the vicinity of the metal-ligand cluster, which is surrounded by conserved aromatic residues. The combined structural and sequence information now available for a series of Mn and Fe superoxide dismutases identifies variable regions in these otherwise very similar molecules; the principal variable site occurs in a surface region between the two long helices which dominate the N-terminal domain.  相似文献   

6.
Manganese and iron superoxide dismutases are structural homologs   总被引:13,自引:0,他引:13  
The crystal structure of a tetrameric manganese superoxide dismutase from a thermophilic bacterium, Thermus thermophilus HB8, has been determined at 4.4-A resolution by local averaging of electron density maps calculated by isomorphous replacement. The spatial arrangement of the principal secondary structural features of iron superoxide dismutase is conserved in manganese dismutase. The structural homology is displayed by orienting the polypeptide chain of Escherichia coli Fe dismutase in the electron density map of Mn dismutase. Densities corresponding to bound Mn3+ occur at locations equivalent to the Fe3+ positions in iron dismutase, indicating one metal binding site per chain, or four sites per tetramer. The Mn tetramer, with 222 symmetry, is approximately rectangular in shape and appears to be constructed with only two unique interfaces. One set of interchain contacts closely resembles the dimer interface of Fe dismutase, but the other interface utilizes an inserted polypeptide segment that has no equivalent in Fe dismutase.  相似文献   

7.
Three forms of the dimeric manganese superoxide dismutase (MnSOD) were isolated from aerobically grown Escherichia coli which contained 2 Mn, 1 Mn and 1 Fe, or 2 Fe, respectively. These are designated Mn2-MnSOD, Mn,Fe-MnSOD, and Fe2-MnSOD. Substitution of iron in place of manganese, eliminated catalytic activity, decreased the isoelectric point, and increased the native electrophoretic anodic mobility, although circular dichroism, high performance liquid chromatography gel exclusion chromatography, and sedimentation equilibrium revealed no gross changes in conformation. Moreover, replacement of iron by manganese restored enzymatic activity. Fe2-MnSOD and the iron-superoxide (FeSOD) of E. coli exhibit distinct optical absorption spectra. These data indicate that the active site environments of E. coli MnSOD and FeSOD must differ. They also indicate that competition between iron and manganese for nascent MnSOD polypeptide chains occurs in vivo, and copurification of these variably substituted MnSODs can explain the substoichiometric manganese contents and the variable specific activities which have been reported for this enzyme.  相似文献   

8.
9.
The study of glutathione status in aerobically grown Escherichia coli cultures showed that the total intracellular glutathione (GSHin + GSSGin) level falls by 63% in response to a rapid downshift in the extracellular pH from 6.5 to 5.5. The incubation of E. coli cells in the presence of 50 mM acetate or 10 micrograms/ml gramicidin S decreased the total intracellular glutathione level by 50 and 25%, respectively. The fall in the total intracellular glutathione level was accompanied by a significant decrease in the (GSHin:GSSGin) ratio. The most profound effect on the extracellular glutathione level was exerted by gramicidin S, which augmented the total glutathione level by 1.8 times and the (GSHout:GSSGout) ratio by 2.1 times. The gramicidin S treatment and acetate stress inhibited the growth of mutant E. coli cells defective in glutathione synthesis 5 and 2 times more severely than the growth of the parent cells. The pH downshift and the exposure of E. coli cells to gramicidin S and 50 mM acetate enhanced the expression of the sodA gene coding for superoxide dismutase SodA.  相似文献   

10.
The rapid inactivation of aconitase by O2-, previously seen to occur in vitro, was explored in vivo. A fraction of the aconitase in growing, aerobic, Escherichia coli is inactive at any instant but can be activated by imposition of anaerobic conditions. This reactivation occurred in the absence of protein synthesis and was inhibited by the ferrous chelator alpha,alpha'-dipyridyl. This fraction of inactive, but activatable, aconitase was increased by augmenting O2- production with paraquat, decreased by elevation of superoxide dismutase, and increased by inhibiting reactivation with alpha,alpha'-dipyridyl. The balance between inactive and active aconitase thus represented a pseudoequilibrium between inactivation by O2- and reactivation by restoration of Fe(II), and it provided, for the first time, a measure of the steady-state concentration of O2- within E. coli. On this basis, [O2-] was estimated to be approximately 20-40 pM in aerobic log phase E. coli containing wild type levels of superoxide dismutase and approximately 300 pM in a mutant strain lacking superoxide dismutase.  相似文献   

11.
Escherichia coli growing anaerobically respond to NO3- with a 3-fold induction of the iron-containing superoxide dismutase. Mutants lacking nitrate reductase do not show this response. Anaerobically grown cells also contain an inactive form of the manganese-containing superoxide dismutase (MnSOD) which can be activated by addition of Mn(II) salts in the presence of acidic guanidinium chloride, followed by dialysis against neutral buffer. Direct addition of Mn(II) to a neutral solution of the inactive MnSOD does not impart activity. This inactive MnSOD thus behaves as would the apoenzyme or the enzyme bearing a metal other than Mn(II) at its active sites. Terminal electron acceptors, such as NO3- or trimethylamine N-oxide, increase the amount of inactive MnSOD produced by anaerobic E. coli. Paraquat, which is itself ineffective in this regard, markedly augments the effect of these terminal electron acceptors. It appears that flow of electrons to sinks such as NO3- or trimethylamine N-oxide, facilitated by paraquat, is sufficient to elicit biosynthesis of the MnSOD protein and that O2- is not needed for this process. Yet, oxygenation and concomitant O2- production do appear important for the insertion of manganese into the growing MnSOD polypeptide, possibly because O-2 oxidizes Mn(II) to Mn(III), and the latter is the valence state most effective in combining with the apoenzyme.  相似文献   

12.
An Escherichia coli double mutant, sodAsodB, that is deficient in both bacterial superoxide dismutases (Mn superoxide dismutase and iron superoxide dismutase) is unable to grow on minimal medium in the presence of oxygen and exhibits increased sensitivity to paraquat and hydrogen peroxide. Expression of the evolutionarily unrelated eukaryotic CuZn superoxide dismutase in the sodAsodB E. coli mutant results in a wild-type phenotype with respect to aerobic growth on minimal medium and in resistance to paraquat and hydrogen peroxide. This supports the hypothesis that superoxide dismutation is the in vivo function of these proteins. Analysis of the growth of sodAsodB cells containing plasmids encoding partially active CuZn superoxide dismutases, produced by in vitro mutagenesis, shows a correlation between cell growth and enzyme activity. Thus, the sodAsodB strain provides a controlled selection for varying levels of superoxide dismutase activity.  相似文献   

13.
The effect of genetically determined glutathione deficiency on the fibroblast content of CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase was investigated. No significant differences between glutathione-deficient and -proficient human fibroblasts were revealed. There was a large variation in the content of the investigated enzymes in fibroblasts grown and analysed on different occasions. Whereas the contents of CuZn superoxide dismutase, catalase and glutathione peroxidase did not deviate much from what has been found in other human cell-lines and tissues, the fibroblasts were found to contain exceptional amounts of Mn superoxide dismutase.  相似文献   

14.
Oxygen Toxicity and the Superoxide Dismutase   总被引:43,自引:18,他引:25  
Oxygen caused an increase in the amount of superoxide dismutase in Escherichia coli B but not in Bacillus subtilis. E. coli B cells, induced by growth under 100% O(2), were much more resistant to the lethal effects of 20 atm of O(2) than were cells which contained the low uninduced level of this enzyme. In contrast, B. subtilis, which could not respond to O(2) by increasing its content of superoxide dismutase, remained equally sensitive to hyperbaric O(2) whether grown under 100% O(2) or areobically. The catalase in these organisms exhibited a reciprocal response to oxygen. Thus, the catalase of E. coli B was not induced by O(2), whereas that of B. subtilis was so induced. These results are consistent with the view that superoxide dismutase is an important component of the defenses of these organisms against the toxicity of oxygen, whereas their catalases are of secondary importance in this respect. The ability of streptonigrin to generate O(2) (-), by a cycle of reduction followed by spontaneous reoxidation, has been verified in vitro. It is further observed that E. coli B which contain the high induced level of superoxide dismutase were more resistant to the lethality of this antibiotic, in the presence of oxygen, than were E. coli B which contained the low uninduced level of this enzyme. This difference between induced and uninduced cells was eliminated by the removal of O(2). These results are consistent with the proposal that the enhanced lethality of streptonigrin under aerobic conditions may relate to its in vivo generation of O(2) (-) by a cycle of reduction and spontaneous reoxidation. In toto, these observations lend support to the hypothesis that O(2) (-) is an important agent of oxygen toxicity and that superoxide dismutase functions to blunt the threat posed by this reactive radical.  相似文献   

15.
The role of dietary Cu and Mn in maintaining tissue integrity, through the effects of these metals on activity of the superoxide dismutase (SOD) enzyme, and their interactions in peroxidative pathways involving Se and vitamin E was investigated. Weanling rats were fed diets deficient in Mn, Cu, Se, and/or vitamin E for 35 days, in a factorial experimental design. Dietary effects on peroxidation, measured in mitochondrial fractions prepared from liver and heart tissue, were compared with changes in the activities of glutathione peroxidase and the Cu and MnSOD enzymes. Decreased heart MnSOD and CuSOD activities, resulting from dietary Mn and Cu deficiencies, were both associated with increased peroxidation. Adequate Se (and glutathione peroxidase activity) prevented the peroxidation associated with either of these deficiencies, but was ineffective with a combined Cu−Mn deficiency. These effects of Se were only observed in tissue lacking glutathione transferase activity. Effects of Cu, Mn, and Se on peroxidation appeared to be present at both levels of vitamin E, although in both tissues, vitamin E deficiency greatly increased the overall peroxidation. Comparison of these in vitro peroxidation results with the deficiency associated lesions observed in vivo indicates that changes in SOD activities and peroxidation pathways may be the dominant cause of these lesions in only some cases. In others, the roles of Cu and Mn in different metabolic pathways appear to be of greater importance.  相似文献   

16.
Catalase and superoxide dismutase in Escherichia coli   总被引:9,自引:0,他引:9  
We assessed the roles of intrabacterial catalase and superoxide dismutase in the resistance of Escherichia coli to killing by neutrophils. E. coli in which the synthesis of superoxide dismutase and catalase were induced by paraquat 10-fold and 5-fold, respectively, did not resist killing by neutrophils. When bacteria were allowed to recover from the toxicity of paraquat for 1 h on ice and for 30 min at 37 degrees C, they still failed to resist killing by neutrophils. Induction of the synthesis of catalase 9-fold by growth in the presence of phenazine methosulfate did not render E. coli resistant to killing by either neutrophils or by H2O2 itself. The lack of protection by intrabacterial catalase from killing by neutrophils could not be attributed to an impermeable bacterial membrane; the evolution of O2 from H2O2 was no less rapid in suspensions of E. coli than in lysates. The failure of intrabacterial catalase or superoxide dismutase to protect bacteria from killing by neutrophils might indicate either that the flux of O-2 and H2O2 in the phagosome is too great for the intrabacterial enzymes to alter or that the site of injury is at the bacterial surface.  相似文献   

17.
Superoxide dismutase (SOD) is known to protect organisms from reactive oxygen metabolites. We tested the hypothesis that the Drosophila Cu,Zn SOD is capable of protecting Escherichia coli from oxidative damage caused by the herbicide paraquat. The Cu,Zn Sod gene of Drosophila sechellia was subcloned into pET-20b(+) expression vector. Transformation of E. coli with the constructed vector resulted in an overexpression of this eukaryotic superoxide dismutase, as evidenced by dramatically increased levels of the Cu,Zn SOD polypeptide in bacterial cytosolic extracts. As well, the E. coli transformants showed resistance to paraquat-mediated inhibition of growth and survival. Paraquat is known to promote formation of the superoxide radical anion inside cells and thus the data have been interpreted as indicating that the cloned superoxide dismutase provides protection in E. coli against damage attributable to free radicals.  相似文献   

18.
Regulation of Mn-SOD activity in the mouse heart: glucose effect   总被引:1,自引:0,他引:1  
Intraperitoneal injection of glucose was found to cause a dose and time dependent suppression of superoxide dismutase activity in mouse heart. Manganese superoxide dismutase was more sensitive to glucose suppression than Cu-Zn superoxide dismutase. While glucose suppressed the Mn form of the enzyme at the concentration of 1.5 mg/kg, it did not have a significant effect on Cu-Zn superoxide dismutase activity at this concentration. The maximum suppression for both forms of superoxide dismutase activity occurred at 4.5 mg/kg. Glucose also suppressed manganese superoxide dismutase activity in mouse heart for a longer period of time compared to Cu-Zn superoxide dismutase. Glucose suppression also occurred in mouse brain. The glucose suppression effect on manganese superoxide dismutase activity in the heart was partially alleviated by X-irradiation.  相似文献   

19.
The effect of supplementation with substances having antioxidant properties on the adaptive responses of human skin fibroblasts to UV-induced oxidative stress was studied in vitro. UVR was found to induce a substantial oxidative stress in fibroblasts, resulting in an increased release of superoxide anions and an increase in lipid peroxidation (shown by an elevated malonaldehyde content). Sub-lethal doses of UVR were also found to induce adaptive responses in the fibroblast antioxidant defences, with a transient rise in catalase and superoxide dismutase activities followed by a slower, large increase in cellular glutathione content. Supplementation of the fibroblasts with the antioxidants, Trolox (a water soluble analogue of alpha-tocopherol), ascorbic acid or beta-carotene, had differential effects on these responses. Trolox supplementation reduced the UVR-induced cellular oxidative stress and adaptive response in a predictable concentration-dependent manner. This was in contrast to ascorbic acid which increased superoxide release from fibroblasts. At low doses, ascorbate supplements also reduced the magnitude of the adaptive increases in catalase and superoxide dismutase activities and increase in glutathione content. Beta-carotene had a similar effect to ascorbic acid, reducing the extent of the adaptations to UVR at lower doses while simultaneously increasing superoxide release and malonaldehyde content. These in vitro data indicate that only the vitamin E analogue suppressed UVR-induced oxidative stress in a predictable manner and suggest that common dietary antioxidants may not be equally effective in reducing the potential deleterious effects of UVR-induced oxidative stress in skin.  相似文献   

20.
Oxygen enhanced the bactericidal activity of rifamycin SV to Escherichia coli K12. Anaerobically grown cells, which had a low level of superoxide dismutase, were more susceptible to the bactericidal activity than aerobically grown cells, which contained a high level of superoxide dismutase. Oxygen also enhanced the inhibition of RNA polymerase activity of rifamycin SV, when Mn2+ was used as a cofactor. Rifamycin S was reduced to rifamycin SV by NADPH catalyzed by cell-free extracts of Escherichia coli K12. These results indicate that the inhibition of bacterial growth by rifamycin SV is due to the production of active species of oxygen resulting from the oxidation-reduction cycle of rifamycin SV in the cells. The aerobic oxidation of rifamycin SV to rifamycin S was induced by metal ions, such as Mn2+, Cu2+, and Co2+. The most effective metal ion was Mn2+. In the presence of Mn2+, accompanying the consumption of 1 mol of oxygen and the oxidation of 1 mol of rifamycin SV, 1 mol of hydrogen peroxide and 1 mol of rifamycin S were formed. Superoxide was generated during the autoxidation of rifamycin SV. Superoxide dismutase inhibited the formation of rifamycin S, but scavengers for hydrogen peroxide and the hydroxyl radical did not affect the oxidation. A mechanism of Mn2+-catalyzed oxidation of rifamycin SV is proposed and its relation to bactericidal activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号