首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The subunits of anthranilate synthase were separated and partially purified by Sephadex G-100 gel filtration from the following six species of Bacillus: Bacillus subtilis, Bacillus licheniformis, Bacillus alvei, Bacillus coagulans, Bacillus pumilus, and Bacillus mascerans. Our data suggest that the enzyme from B. alvei is unique among these species. First, the anthranilate synthase complexes are readily dissociated during gel filtration in the absence of glutamine into a large component (aminotransferase), subunit E, and a small component subunit X (glutamine-binding protein), whereas a higher salt concentration is required to dissociate the complex from B. alvei. Second, the aminotransferase activity from all six species is stimulated by glycerol and inhibited by tryptophan; however, only the large component from B. alvei is stimulated by 2-mercaptoethanol. Finally, the large component can be titrated with the small component to yield a complex which can utilize glutamine as a substrate (amidotransferase). The homologous complexes have an amidotransferase to aminotransferase ratio of 1.4 to 2.3, but the B. alvei complex has a ratio of 0.9. Except for complexes that involve the large component from B. alvei, hybrid complexes can be formed which have ratios as good as the homologous complexes. These data are consistent with the hypothesis that B. alvei is unique among the bacilli with respect to some enzymes in the aromatic amino acid biosynthetic pathway.  相似文献   

2.
We have determined the DNA sequence of the distal 148 codons of trpE and all of trpG in Pseudomonas aeruginosa. These genes encode, respectively, the large and small (glutamine amidotransferase) subunits of anthranilate synthase, the first enzyme in the tryptophan synthetic pathway. The sequenced region of trpE is homologous with the distal portion of E. coli and Bacillus subtilis trpE, whereas the trpG sequence is homologous to the glutamine amidotransferase subunit genes of a number of bacterial and fungal anthranilate synthases. The two coding sequences overlap by 23 bp. Codon usage in these Pseudomonas genes shows a marked preference for codons ending in G or C, thereby resembling that of trpB, trpA, and several other chromosomal loci from this species and others with a high G + C content in their DNA. The deduced amino acid sequence for the P. aeruginosa trpG gene product differs to a surprising extent from the directly determined amino acid sequence of the glutamine amidotransferase subunit of P. putida anthranilate synthase (Kawamura et al. 1978). This suggests that these two proteins are encoded by loci that duplicated much earlier in the phylogeny of these organisms but have recently assumed the same function. We have also determined 490 bp of DNA sequence distal to trpG but have not ascertained the function of this segment, though it is rich in dyad symmetries.   相似文献   

3.
Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa. They were cloned, sequenced, inactivated in vitro by insertion of an antibiotic resistance gene, and returned to P. aeruginosa, replacing the wild-type gene. One anthranilate synthase enzyme participates in tryptophan synthesis; its genes are designated trpE and trpG. The other anthranilate synthase enzyme, encoded by phnA and phnB, participates in the synthesis of pyocyanin, the characteristic phenazine pigment of the organism. trpE and trpG are independently transcribed; homologous genes have been cloned from Pseudomonas putida. The phenazine pathway genes phnA and phnB are cotranscribed. The cloned phnA phnB gene pair complements trpE and trpE(G) mutants of Escherichia coli. Homologous genes were not found in P. putida PPG1, a non-phenazine producer. Surprisingly, PhnA and PhnB are more closely related to E. coli TrpE and TrpG than to Pseudomonas TrpE and TrpG, whereas Pseudomonas TrpE and TrpG are more closely related to E. coli PabB and PabA than to E. coli TrpE and TrpG. We replaced the wild-type trpE on the P. aeruginosa chromosome with a mutant form having a considerable portion of its coding sequence deleted and replaced by a tetracycline resistance gene cassette. This resulted in tryptophan auxotrophy; however, spontaneous tryptophan-independent revertants appeared at a frequency of 10(-5) to 10(6). The anthranilate synthase of these revertants is not feedback inhibited by tryptophan, suggesting that it arises from PhnAB. phnA mutants retain a low level of pyocyanin production. Introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that the trpE trpG gene products are capable of providing some anthranilate for pyocyanin synthesis.  相似文献   

4.
The properties of the anthranilate synthetase complex and its separated subunits were compared in catalyzing the anthranilate synthetase reaction, chorismate + l-glutamine or NH(4) (+) --> anthranilate, and the transferase reaction, anthranilate + 5'-phosphorylribosyl-1-pyrophosphate --> phosphoribosyl anthranilate. It is shown that anthranilate synthetase component I is activated by normal anthranilate synthetase component II, a component II(CRM) (CRM = immunologically cross-reacting material), and by a presumed fragment of component II produced by a deletion mutant. Significant differences between the complex and its subunits are demonstrated with respect to substrate affinity, thermostability, feedback inhibitor sensitivity, and activity in the presence of various divalent cations. Of particular interest are the findings that the transferase activity of component II is only inhibitable by l-tryptophan when the component is in the complex and that this inhibition does not appear to depend upon the feedback-sensitive site of component I.  相似文献   

5.
6.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

7.
Anthranilate synthase of Agmenellum quadruplicatum, a unicellular species of blue-green bacteria, consists of two nonidentical subunits. A 72,000 dalton protein has aminase activity but is incapable of reaction with glutamine (amidotransferase) unless a second protein (18,000 molecular weight) is present. The small subunit was first detected through its ability to complement a partially purified aminase subunit from Bacillus subtilis to produce a hybrid complex capable of amidotransferase function. Conditions for the function of the heterologous complex were less stringent than for the homologous A. quadruplicatum complex. A reducing agent such as dithiothreitol stabilizes the A. quadruplicatum aminase subunit and is obligatory for amidotransferase function. L-Tryptophan feedback inhibits both the aminase and amidotransferase reactions of anthranilate synthase; Ki values of 6 X 10(-8) M for the amidotransferase activity and 2 X 10(-6) M for the aminase activity were obtained. The Km value calculated for ammonia (2.2 mM) was more favorable than the Km value glutamine (13 mM). Likewise, the Vmax of anthranilate synthase was greater with ammonia than with glutamine. Starvation of a tryptophan auxotroph results in a threefold derepression of the aminase subunit, but no corresponding increase in the small 18,000 M subunit occurs. While microbial anthranilate synthase complexes are remarkably similar overall, the relatively good aminase activity of the A. quadruplicatum enzyme may be of physiological significance in nature.  相似文献   

8.
Saccharomyces cerevisiae anthranilate synthase:indole-3-glycerol phosphate synthase is a multifunctional hetero-oligomeric enzyme encoded by genes TRP2 and TRP3. TRP2, encoding anthranilate synthase Component I, was cloned by complementation of a yeast trp2 mutant. The nucleotide sequence of TRP2 as well as that of TRP3 were determined. The deduced anthranilate synthase Component I primary structure from yeast exhibits only limited similarity to that of the corresponding Escherichia coli subunit encoded by trpE. On the other hand, yeast anthranilate synthase Component II and indole-3-glycerol phosphate synthase amino acid sequences from TRP3 are clearly homologous with the corresponding sequences of the E. coli trpG and trpC polypeptide segments and thereby establish the bifunctional structure of TRP3 protein. Based on comparisons of TRP3 amino acid sequence with homologous sequences from E. coli and Neurospora crassa, an 11-amino acid residue connecting segment was identified which fuses the trpG and trpC functions of the bifunctional TRP3 protein chain. These comparisons support the conclusion that the amino acid sequence of connectors in homologous multifunctional enzymes need not be conserved. Connector function is thus not dependent on a specific sequence. Nuclease S1 mapping was used to identify mRNA 5' termini. Heterogeneous 5' termini were found for both TRP2 and TRP3 mRNA. TRP2 and TRP3 5'-flanking regions were analyzed for sequences that might function in regulation of these genes by the S. cerevisiae general amino acid control system. The 9 base pair direct repeat (Hinnebusch, A.G., and Fink, G.R. (1983) J. Biol. Chem. 258, 5238-5247) and inverted repeats were identified in the 5'-flanking sequences of TRP2 and TRP3.  相似文献   

9.
Enzymes of the Tryptophan Pathway in Three Bacillus Species   总被引:10,自引:8,他引:2       下载免费PDF全文
The tryptophan synthetic pathway was characterized in three species of Bacillus, B. subtilis, B. pumilus, and B. alvei. They share the common features of a pathway which is subject to tryptophan repression, contains no unexpected complexes among the five enzymes, exhibits dissociable anthranilate synthase enzymes which do not require phosphoribosyl transferase for amidetransfer activity, contains separate indoleglycerol phosphate synthase and phosphoribosylanthranilate isomerase enzymes, and contains similar tryptophan synthetase multimers. In looking at these characteristics in detail however, differences among the three species became apparent, as, for example, in the complementation observed between the alpha and beta(2) components of tryptophan synthetase, and the dissociation patterns of the large and small components of anthranilate synthase. The results demonstrate some pitfalls in attempting to compare multimeric enzymes in crude extracts from different organisms.  相似文献   

10.
Forty single gene mutations in Chlamydomonas reinhardtii were isolated based on resistance to the compound 5'-methyl anthranilic acid (5-MAA). In other organisms, 5-MAA is converted to 5'-methyltryptophan (5-MT) and 5-MT is a potent inhibitor of anthranilate synthase, which catalyzes the first committed step in tryptophan biosynthesis. The mutant strains fall into two phenotypic classes based on the rate of cell division in the absence of 5-MAA. Strains with class I mutations divide more slowly than wild-type cells. These 17 mutations map to seven loci, which are designated MAA1 to MAA7. Strains with class II mutations have generation times indistinguishable from wild-type cells, and 7 of these 23 mutations map to loci defined by class I mutations. The remainder of the class II mutations map to 9 other loci, which are designated MAA8-MAA16. The maa5-1 mutant strain excretes high levels of anthranilate and phenylalanine into the medium. In this strain, four enzymatic activities in the tryptophan biosynthetic pathway are increased at least twofold. These include the combined activities of anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, indoleglycerol phosphate synthetase and anthranilate synthase. The slow growth phenotypes of strains with class I mutations are not rescued by the addition of tryptophan, but the slow growth phenotype of the maa6-1 mutant strain is partially rescued by the addition of indole. The maa6-1 mutant strain excretes a fluorescent compound into the medium, and cell extracts have no combined anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase and indoleglycerol phosphate synthetase activity. The MAA6 locus is likely to encode a tryptophan biosynthetic enzyme. None of the other class I mutations affected these enzyme activities. Based on the phenotypes of double mutant strains, epistatic relationships among the class I mutations have been determined.  相似文献   

11.
3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthases catalyse the first step of the shikimate pathway. Two unrelated DAHP synthase types have been described in plants and bacteria. Two type II (aroA(A2) and aroA(A5)) and one type I DAHP synthase gene (aroA001) were identified from the myxobacterium Stigmatella aurantiaca Sg a15. Inactivation of aroA(A5) leads to a mutant that is impaired in the biosynthesis of aurachins, which are electron transport inhibitors and contain an anthranilate moiety. Feeding of anthranilic acid to the mutant culture restores production of aurachins. Inactivation of aroA(A2) and aroA001 does not impair production of aurachins or other known secondary metabolites of S. aurantiaca Sg a15.  相似文献   

12.
Photosystem I reaction center was isolated from the cyanobacterium, Synechocystis sp. PCC 6803, in a form which contains seven different polypeptide subunits. One of the subunits, with a molecular mass of about 16 kDa, was isolated, and protein sequence information was obtained for the amino terminus and several tryptic peptides. Oligonucleotide probes, corresponding to these sequences, were used to probe a genomic library, and the gene, designated psaD, encoding subunit II was cloned and sequenced. The gene encodes a polypeptide with a mass 15,644 Da, which exhibits a high degree of similarity to subunit II from tomato, as well as amino acid sequences reported from barley photosystem I. In addition to this gene, three large open reading frames were identified. Two remain unidentified, and the third is highly homologous to anthranilate synthase, component 1 from Escherichia coli and Saccharomyces cerevisiae.  相似文献   

13.
In iron-replete environments, the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein represses expression of two small regulatory RNAs encoded by prrF1 and prrF2. Here we describe the effects of iron and PrrF regulation on P. aeruginosa physiology. We show that PrrF represses genes encoding enzymes for the degradation of anthranilate (i.e. antABC), a precursor of the Pseudomonas quinolone signal (PQS). Under iron-limiting conditions, PQS production was greatly decreased in a DeltaprrF1,2 mutant as compared with wild type. The addition of anthranilate to the growth medium restored PQS production to the DeltaprrF1,2 mutant, indicating that its defect in PQS production is a consequence of anthranilate degradation. PA2511 was shown to encode an anthranilate-dependent activator of the ant genes and was subsequently renamed antR. AntR was not required for regulation of antA by PrrF but was required for optimal iron activation of antA. Furthermore, iron was capable of activating both antA and antR in a DeltaprrF1,2 mutant, indicating the presence of two distinct yet overlapping pathways for iron activation of antA (AntR-dependent and PrrF-dependent). Additionally, several quorum-sensing regulators, including PqsR, influenced antA expression, demonstrating that regulation of anthranilate metabolism is intimately woven into the quorum-sensing network of P. aeruginosa. Overall, our data illustrate the extensive control that both iron regulation and quorum sensing exercise in basic cellular physiology, underlining how intermediary metabolism can affect the regulation of virulence factors in P. aeruginosa.  相似文献   

14.
The acyl-acyl carrier protein (ACP) thioesterase cDNA from the plant Umbellularia californica was functionally expressed in various recombinant Escherichia coli strains in order to establish a new metabolic route toward medium-chain-length polyhydroxyalkanoate (PHA(MCL)) biosynthesis from non-related carbon sources. Coexpression of the PHA synthase genes from Ralstonia eutropha and Pseudomonas aeruginosa, or only the PHA synthase gene from P. aeruginosa, respectively, showed PHA(MCL) accumulation when the type II PHA synthase from P. aeruginosa was produced. Both wild-type E. coli and various fad mutants were investigated; and only when the beta-oxidation pathway was impaired PHA(MCL) accumulation from gluconate was observed, contributing to about 6% of cellular dry weight. Thus coexpression of type II PHA synthase gene with cDNA encoding the medium-chain acyl-ACP thioesterase from U. californica established a new PHA(MCL) biosynthesis pathway, connecting fatty acid de novo biosynthesis with fatty acid beta-oxidation, using a non-related carbon source.  相似文献   

15.
Cysteine 84 was replaced by glycine in Serratia marcescens anthranilate synthase Component II using site-directed mutagenesis of cloned trpG. This replacement abolished the glutamine-dependent anthranilate synthase activity but not the NH3-dependent activity of the enzyme. The mutation provides further evidence for the role of active site cysteine 84 in the glutamine amide transfer function of anthranilate synthase Component II. By the criteria of circular dichroism, proteolytic inactivation, and feedback inhibition the mutant and wild type enzymes were structurally similar. The NH3-dependent anthranilate synthase activity of the mutant enzyme supported tryptophan synthesis in media containing a high concentration of ammonium ion.  相似文献   

16.
Two of the enzymes responsible for tryptophan biosynthesis in Bacillus subtilis have been extensively purified. These proteins are indole-3-glycerol phosphate synthase and N-(5'-phosphoribosyl) anthranilate isomerase. By comparison to the non-differentiating enteric bacteria in which these two enzymes are fused into a single polypeptide, the isolation of the indoleglycerol phosphate synthase and phosphoribosyl anthranilate isomerase from B. subtilis has demonstrated that the two proteins are separate species in this organism. The two enzymes were clearly separable by anion-exchange chromatography without any significant loss of activity. Molecular weights were determined for both enzymes by gel filtration and sodium dodecyl sulfate-slab gel electrophoresis, and indicated that the indoleglycerol phosphate synthase is the slightly larger of the two proteins. The minimum molecular weight for indoleglycerol phosphate synthase was 23,500, and that for phosphoribosyl anthranilate isomerase was 21,800. Both enzymes have been examined as to conditions necessary to achieve maximal activity of their individual functions and to maintain that activity.  相似文献   

17.
18.
19.
20.
Pseudomonas putida possesses seven structural genes for enzymes of the tryptophan pathway. All but one, trpG, which encodes the small (beta) subunit of anthranilate synthase, have been mapped on the circular chromosome. This report describes the cloning and sequencing of P. putida trpE, trpG, trpD, and trpC. In P. putida and Pseudomonas aeruginosa, DNA sequence analysis as well as growth and enzyme assays of insertionally inactivated strains indicated that trpG is the first gene in a three-gene operon that also contains trpD and trpC. In P. putida, trpE is 2.2 kilobases upstream from the trpGDC cluster, whereas in P. aeruginosa, they are separated by at least 25 kilobases (T. Shinomiya, S. Shiga, and M. Kageyama, Mol. Gen. Genet., 189:382-389, 1983). The DNA sequence in P. putida shows an open reading frame on the opposite strand between trpE and trpGDC; this putative gene was not characterized. Evidence is also presented for sequence similarities in the 5' untranslated regions of trpE and trpGDC in both pseudomonads; the function of these regions is unknown, but it is possible that they play some role in regulation of these genes, since all the genes respond to repression by tryptophan. The sequences of the anthranilate synthase genes in the fluorescent pseudomonads resemble those of p-aminobenzoate synthase genes of the enteric bacteria more closely than the anthranilate synthase genes of those organisms; however, no requirement for p-aminobenzoate was found in the Pseudomonas mutants created in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号