首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Menadione bisulphite increased endogenous oxygen-radical production by rat brain synaptosomes, as indicated by H2O2 generation. Increased oxygen-radical production was also demonstrated in synaptosomes prepared from menadione-treated rats and synaptosomes reoxygenated after an anoxic insult. Acetylcholine synthesis de novo was inhibited in synaptosomes incubated with menadione in vitro, in synaptosomes prepared from menadione-treated animals in vivo, and in depolarized post-anoxic synaptosomes. Intrasynaptosomal free Ca2+ was increased by menadione in vitro (50 microM), but this increase was not due to stimulation of Ca2+ entry into the nerve terminals. Acetylcholine release was stimulated by menadione in vitro, possibly as a consequence of the elevated intrasynaptosomal Ca2+ content. The Ca2+ contents of synaptosomes prepared from menadione (10 mg/kg)-treated animals in vivo and synaptosomes reoxygenated after anoxia were unchanged. In synaptosomes prepared from menadione-treated animals, acetylcholine release was no longer significantly stimulated by K+, whereas it was unchanged from control (normoxic) values in synaptosomes reoxygenated after anoxia. None of these treatments caused any measurable damage to the synaptic plasma membrane (as judged by the release of lactate dehydrogenase), or to synaptosomal phospholipases (as judged by choline release from membrane phospholipids). Synaptosomes prepared from menadione-treated rats were found to be a good model for the study of post-anoxic damage to nerve-terminal function.  相似文献   

2.
Synaptosomes exposed to anoxic insult produce lactate at a slow rate (measured over 60 min). No measurable damaging effects were produced by prolonged depolarisation, anoxic insult, or exogenous lactate (2-32 mM) either on the synaptic plasma membrane (as judged by release of lactate dehydrogenase and soluble proteins), or on synaptosomal phospholipases (as judged by choline release from membrane phospholipids). Potassium-stimulated acetylcholine release was decreased by incubation in the presence of lactate (2-32 mM), as was potassium- and veratrine-stimulated calcium uptake and the calcium content of depolarised synaptosomes. The intrasynaptosomal pH was also reduced but there was no stimulation of oxygen radical production (as judged by H2O2 generation) by exogenous lactate. The role that lactic acidosis may play in giving rise to the altered calcium homeostasis and decreased acetylcholine release from synaptosomes exposed to anoxic insult is discussed.  相似文献   

3.
In depolarised anoxic synaptosomes, in which lactate production was significantly raised compared with normoxic conditions, calcium uptake, net acetylcholine release, and the intrasynaptosomal calcium concentration were all significantly lowered. In contrast, lactate production in synaptosomes incubated under aglycaemic- and ischaemic-type conditions was significantly lower and basal calcium uptake, acetylcholine release, and intrasynaptosomal calcium concentration were elevated compared with normoxia. In addition, the increase in intrasynaptosomal calcium concentration under the ischaemic-type condition appeared to be greater than could be accounted for by the rise in calcium uptake alone. Intrasynaptosomal pH reflected the lactate production under each condition investigated. Addition of exogenous lactate to normoxic synaptosomes mimicked the effects observed in anoxia, suggesting that lactate itself may have blocked the calcium uptake, inhibiting the rise in intrasynaptosomal calcium and acetylcholine release occurring in depolarised anoxic synaptosomes. When lactate was added to ischaemic synaptosomes, the large rise in intrasynaptosomal calcium concentration, calcium uptake, and acetylcholine release were decreased, suggesting that lactate may have a protective role in preventing cell death by calcium overload under ischaemic-type conditions. Evidence is presented to suggest that the effect of L-lactate was due to the lactate moiety itself rather than the associated acidosis.  相似文献   

4.
L-Lactate (4-32 mM) added exogenously to resting or depolarised rat forebrain synaptosomes led to a significant decrease in intrasynaptosomal pH. Similarly depolarisation-induced increases in intrasynaptosomal calcium, calcium uptake, and acetylcholine release were all inhibited. These effects mimicked those previously observed in synaptosomes under anoxic conditions and suggest that lactate may be involved in limiting the damage due to calcium accumulation occurring during ischaemia. D-Lactate (added exogenously up to 32 mM) did not produce similar effects on these parameters even though the concentrations of intrasynaptosomal D-lactate reached levels comparable to those obtained with L-lactate (at 8-16 mM exogenous concentration). The results suggest that the mechanism of action of lactate on these parameters is stereospecific for the L-enantiomer. The effect of glucose availability on lactate production was assessed to explore the role of substrate availability on ischaemia/anoxic events. When exogenous glucose was increased (10-60 mM), there was no further increase in lactate production in normoxic synaptosomes, which suggests that glucose is not limiting under these conditions. When glucose was removed, as may occur in complete ischaemia, there was a significant decrease in lactate production after 60 min under anoxic or normoxic conditions. It would seem likely therefore that the mechanism underlying the changes observed in synaptosomes incubated under conditions reflecting complete ischaemia does not involve lactate.  相似文献   

5.
The effects of in vitro anoxia on the release of glutamate in isolated nerve terminals were studied. The extra-synaptosomal concentration of glutamate ([Glu]ext) under aerobic conditions was 2.3 microM and increased to 4.9 microM after 10 min of anoxia. However, when synaptosomes were incubated in the presence of lactate plus pyruvate instead of glucose, to prevent anaerobic glycolysis, anoxia induced an eightfold increase in the [Glu]ext. The accumulation of glutamate in the external medium during anoxia was Ca2+ independent and insensitive to a significant reduction of the Ca(2+)-dependent release of the amino acid. These results indicate that a Ca(2+)-independent efflux of cytoplasmic glutamate occurs during in vitro anoxia in isolated nerve terminals.  相似文献   

6.
Acetylcholine and choline release was measured by using an automated and modified version of the chemiluminescence technique of Israel & Lesbats [(1981) Neurochem. Int. 3, 81-90]. A comparison of acetylcholine and choline release from synaptosomes demonstrated that acetylcholine release was K+-stimulated and inhibited by the Ca2+ ionophore A23187 and cyanide. Choline release, however, did not vary markedly under different conditions, suggesting that it is not associated with acetylcholine release at the nerve ending. Total acetylcholine synthesis in synaptosomal preparations was measured concurrently with the incorporation of [14C]acetyl and [3H]choline moieties by using the chemiluminescence method. Under sub-optimal glucose concentrations or in the absence of treatment of the synaptosomes with the acetylcholinesterase inhibitor phospholine, the incorporation of radioactivity exceeded total synthesis, indicating that cycling between acetylcholine and its precursors may occur. After treatment with phospholine, acetyl-group incorporation from D-[U-14C]glucose occurred without dilution of the precursor at optimal (1.0 mM) and low (0.1 mM) glucose concentrations; however, at very low (0.01 mM) glucose concentrations, dilution by a small endogenous pool occurred. [14C]Acetyl incorporation into acetylcholine was compared with various metabolic parameters. A closer correlation was observed between [14C]acetyl-group incorporation into acetylcholine and the calculated acetyl-carrier efflux from the mitochondria than with the calculated pyruvate-dehydrogenase-complex flux. The results are discussed with respect to the regulation of acetylcholine concentrations at the synapse and the mechanism whereby turnover occurs.  相似文献   

7.
Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.  相似文献   

8.
We examined brain mitochondrial function in normo- (5 mM) and hyperglycemic (50 mM) cats after 8 min of anoxia. In anoxic normoglycemic cats, mitochondrial state 3 respiration with NAD-linked substrates glutamate or pyruvate (both plus malate) was inhibited 30-50%. The uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) maximally stimulated respiration, indicating that inhibition of phosphorylation, not impairment of electron transport, substrate transport, or oxidation was present. State 3 respiration with succinate (plus rotenone) was unaffected. Mitochondrial respiratory control ratios trended toward reductions whereas ADP/O ratios remained unchanged. In contrast, brain mitochondria from anoxic hyperglycemic cats showed no such inhibition of state 3 respiration and no differences in function from normo- and hyperglycemic control animals except for trends toward loose coupling. Significantly higher brain tissue glucose concentrations were present in hyperglycemic controls as the only metabolite difference compared to normoglycemic controls. At the end of anoxia, hyperglycemic cats exhibited significantly higher cortical lactate and glucose levels but similarly reduced high-energy phosphate concentrations compared to normoglycemic cats. These results demonstrate that increased availability of glucose to gray matter as a consequence of hyperglycemia maintains normal mitochondrial state 3 respiration during exposure to anoxia. Previous survival studies have shown that lower serum glucose concentrations during anoxia are relatively brain protective. This result indicates that the presently described alterations in mitochondrial respiration must be fully reversible.  相似文献   

9.
Effects of probes of membrane potential on metabolism in synaptosomes   总被引:1,自引:0,他引:1  
Effects of three probes for measuring membrane potential, tetraphenylphosphonium (TPP+), rhodamine 6G and 3,3'-dipropylthiocarbocyanine (diS-C3-(5)) on energy metabolism in synaptosomes were investigated. None of the three probes had any effect on lactate production in synaptosomes. TPP+ and rhodamine 6G did not inhibit the respiration of synaptosomes with pyruvate and succinate as exogenous substrate and were only weakly inhibitory with endogenous substrates. In contrast, diS-C3-(5) markedly inhibited the respiration of synaptosomes with glucose, pyruvate and endogenous substrates. All three probes reduced ATP content in synaptosomes and depolarized the membrane potential in synaptosomes with increasing concentrations of the probes. It is, therefore, preferable to estimate membrane potential with TPP+ or rhodamine 6G at their low concentrations where their effect on metabolism is negligible.  相似文献   

10.
RESPIRATION IN VITRO OF SYNAPTOSOMES FROM MAMMALIAN CEREBRAL CORTEX   总被引:26,自引:13,他引:13  
Abstract— —(1) The respiratory properties of synaptosomes and mitochondria from mammalian cerebral cortex are compared.
(2) Synaptosome showed high and linear respiration with glucose and pyruvate as substrates in Krebs-Ringer media. Mitochondria showed such respiration only with pyruvate as substrate in media lacking Na and high in K and phosphate.
(3) Exposure of synaptosomes to hypotonic media caused loss of lactate dehydrogenase (LDH) and protein, and respiration diminished and became non-linear.
(4) Both ATP and phosphocreatine were synthesised by synaptosomes with glucose as substrate. ATP was synthesised by mitochondria in the presence of pyruvate.
(5) Synaptosome but not mitochondria showed some capacity for active accumulation of potassium.
(6) Both mitochondria and synaptosomes respired with glutamate as substrate. Glutamate caused 80 per cent loss of ATP and phosphocreatine in synaptosomes but did not diminish the level of mitochondrial ATP.  相似文献   

11.
Acetylcholine synthesis in rat brain synaptosomes was investigated with regard to the intracellular sources of its two precursors, acetyl coenzyme A and choline. Investigations with α-cyano-4-hydroxycinnamate, an inhibitor of mitochondrial pyruvate transport, indicated that pyruvate must be utilized by pyruvate dehydrogenase located in the mitochondria, rather than in the cytoplasm, as recently proposed. Evidence for a small, intracellular pool of choline available for acetylcholine synthesis was obtained under three experimental conditions. (1) Bromopyruvate competitively inhibited high-affinity choline transport, perhaps because of accumulation of intracellular choline which was not acetylated when acetyl coenzyme A production was blocked. (2) Choline that was accumulated under high-affinity transport conditions while acetyl coenzyme A production was impaired was subsequently acetylated when acetyl coenzyme A production was resumed. (3) Newly synthesized acetylcholine had a lower specific activity than that of choline in the medium. These results indicate that the acetyl coenzyme A that is used for the synthesis of acetylcholine is derived from mitochondrial pyruvate dehydrogenase and that there is a small pool of choline within cholinergic nerve endings available for acetylcholine synthesis, supporting the proposal that the high-affinity transport and acetylation of choline are kinetically coupled.  相似文献   

12.
1. Cerebral-cortex synaptosomes were shown to synthesize (14C)acetylcholine after incubation with (14C)choline, and 25mM-KCl released (14C)acetylcholine (but not (14C)choline) into the medium by a Ca2+-dependent and Mg2+-sensitive process. 2. The K+-stimulated release of (14C)acetylcholine was inhibited by more than 80% after preincubation of the synaptosomes with 10(5) mouse lethal doses of botulinum toxin/ml. (14C)choline uptake, (14C)acetylcholine synthesis, intrasynaptosomal K+ and occluded lactate dehydrogenase were unaffected by the toxin. It also failed to prevent the K+-stimulated release of (3H)noradrenaline and (14C)glycine from synaptosomes. 3. Fractionation of hypo-osmotically shocked synaptosomes revealed that more than 75% of the radioactive acetylcholine was in the cytoplasmic compartment, although the vesicle pellet contained more total acetylcholine than the cytoplasmic pool. Consequently the specific radioactivity of acetylcholine in the cytoplasmic pool was almost 5 times that of the vesicles. This distribution was unaffected by preincubation with botulinum toxin. It is concluded that the toxin acts directly on the release of acetylcholine, rather than influencing its storage. 4. After K+-stimulation, toxin-inhibited synaptosomes contained increased amounts of total acetylcholine, which suggests that its rate of synthesis is controlled by depolarization rather than release.  相似文献   

13.
The energy status (as measured by the ATP/ADP ratio), oxidative metabolism (14CO2 output) and neurotransmitter synthesis ( [14C]acetylcholine production) by rat brain synaptosomes utilizing [U-14C]glucose has been studied. The ability of anoxia in vitro to permanently alter these parameters was investigated with reference to external [Ca2+] and [H+]. It has previously been shown that anoxic damage to synaptosomal preparations is only apparent when their metabolism is stimulated by veratridine [Harvey, Booth & Clark (1982) Biochem. J. 206, 433-439]. It is concluded that low [Ca2+] ameliorates, and high [H+] exacerbates, the damage sustained by veratridine-stimulated anoxic synaptosomes. The combined effects of low pH, anoxia and veratridine stimulation on synaptosomal metabolism most closely approximated to the irreversible damage to brain metabolism observed during acute hypoxia in vivo [Booth, Harvey & Clark (1983) J. Neurochem. 40, 106-110]. Suitably treated synaptosomal preparations may therefore be usefully employed as models to study impaired neurotransmitter synthesis in vivo.  相似文献   

14.
The bioenergetic interaction between glycolysis and oxidative phosphorylation in isolated nerve terminals (synaptosomes) from guinea-pig cerebral cortex is characterized. Essentially all synaptosomes contain functioning mitochondria. There is a tight coupling between glycolytic rate and respiration: uncoupler causes a tenfold increase in glycolysis and a sixfold increase in respiration. Synaptosomes contain little endogenous glycolytic substrate and glycolysis is dependent on external glucose. In glucose-free media, or following addition of iodoacetate, synaptosomes continue to respire and to maintain high ATP/ADP ratios. In contrast to glucose, the endogenous substrate can neither maintain high respiration in the presence of uncoupler nor generate ATP in the presence of cyanide. Pyruvate, but not succinate, is an excellent substrate for intact synaptosomes. The in-situ mitochondrial membrane potential (delta psi m) is highly dependent upon the availability of glycolytic or exogenous pyruvate; glucose deprivation causes a 20-mV depolarization, while added pyruvate causes a 6-mV hyperpolarization even in the presence of glucose. Inhibition of pyruvate dehydrogenase by arsenite or pyruvate transport by alpha-cyano-4-hydroxycinnamate has little effect on ATP/ADP ratios; however respiratory capacity is severely restricted. It is concluded that synaptosomes are valuable models for studying the control of mitochondrial substrate supply in situ.  相似文献   

15.
Neuronal activity is tightly coupled with brain energy metabolism. Numerous studies have proved that glucose is not a sole energy substrate for neurons; metabolic monocarboxylate intermediates derived from glucose (pyruvate and lactate) released by astrocytes are shown to be taken up and oxidized by neurons, and, moreover, could serve as neuroprotective agents. Herein, we presented the data that extracellular pyruvate (4 mM) in the presence of glucose caused the increase in synaptosomal ATP content from 3.48+/-0.30 to 4.38+/-0.23 nmol/mg of protein. This correlates with the enhanced accumulation of fluorescent dye acridine orange in the available and the recycling synaptic vesicles within the synaptosomes reflecting the improved generation of proton gradient through the synaptic vesicle membrane. We have also demonstrated the effect of extracellular pyruvate on distribution of [3H]GABA between synaptic vesicles and cytoplasm in loaded synaptosomes. To estimate [3H]GABA accumulation into the synaptic vesicles, Ca 2+-dependent 4-aminopyridine-triggered exocytotic neurotransmitter release was studied. Evaluation of cytosolic 1H]GABA pool was performed by measuring the Ca2+-independent transporter-mediated neurotransmitter release evoked by nipecotic acid or high K+. The presence of pyruvate resulted in doubled exocytotic release of [3H]GABA, and significantly attenuated Ca2+-independent release of cytosolic [3H]GABA. Together, these observations provide insight into the important role of glucose metabolic intermediate, pyruvate, in sustaining activity of vesicular inhibitory amino acid transporter and so normal inhibitory transmission. We propose to use pyruvate for keeping up synaptosomal preparations in state of metabolic stability.  相似文献   

16.
A two-fold increase in acetylcholine, that can randomly be released by brain synaptosomes, is registered 60 min following whole-body X-irradiation of rats with a dose of 0.21 C/kg; depolarization of the synaptosome membranes by potassium chloride increases the release of acetylcholine the augmentation of the release in this case being lower than that in the control. The initial rate of spontaneous neuromediator release from synaptosomes grows by 80 per cent whereas after depolarization of synaptosome membranes by potassium chloride, by 15 per cent. There is a 2.5-fold increase in the maximum rate of a highly specific uptake of choline with Km value being constant. Acetylcholine content of gray substance of irradiated rat brain is invariable.  相似文献   

17.
The time course of the incorporation of choline from plasma into a high and a low molecular weight fraction from mouse brain synaptosomes was studied. The fractions were obtained from lysed synaptosomes by gel filtration on Sephadex G-25. An extremely rapid incorporation of radioactivity into acetylcholine was found in both fractions and in the time interval 0.25-9 min after the intravenous administration of labelled choline, higher specific radioactivities of acetylcholine were found in the high molecular weight fraction than in the low molecular weight fraction. However, the specific radioactivity of choline in the high molecular weight fraction was much lower than that of acetylcholine. It was found that barbiturate anaesthesia caused a marked decrease in the labelling of acetylcholine in the high molecular weight fraction while the incorporation into the low molecular weight fraction was affected to a much smaller extent. Acetylcholine of the high molecular weight fraction showed properties similar to those of vesicle-bound acetylcholine. The recoveries of labelled and endogenous acetylcholine and choline from the brain homogenates were calculated in different steps of the fractionation procedure. In the fraction containing lysed synaptosomes the recovery of radioactive acetylcholine was lower than that of endogenous acetylcholine. This may indicate the presence of two types of bound acetylcholine in the synaptosomes. Different models for the intraneuronal synthesis of acetylcholine are discussed and it is proposed that a site of acetylcholine synthesis in vivo may be closely associated with some constituent of the high molecular weight fraction and directly coupled with the storage of the transmitter.  相似文献   

18.
Studies on the Osmotic Disruption and Resealing of Synaptosomes   总被引:2,自引:2,他引:0  
Abstract: The release of lactate dehydrogenase and K+ when synaptosomes are exposed to resuspension in media of various osmolarity has been investigated in order to measure their disruption. Even when resuspended in distilled water a significant percentage (10–20%) of lactate dehydrogenase and K+ remains unreleased. The particles containing these substances sediment to the same density as synaptosomes. Synaptosomes retaining their internal organlles after hypoosmotic treatment can be seen in electron micrographs. Resealing of disrupted synaptosomes was measured by the inclusion of [14C]sucrose. The resealing is spontaneous, essentially complete (80–90%) within 20 min and not noticeably affected by temperature, pH, or the addition of fusogen. The synaptosome preparation after hypoosmotic disruption will therefore contain some undisrupted synaptosomes with some or all of their complement of cytoplasmic constituents, as well as resealed synaptosomes. The retention of the ability of the hypoosmotically treated preparation to convert [14C]choline to [14C]acetylcholine is demonstrated as an example of the disproportionate effect these undisrupted particles have on its properties.  相似文献   

19.
Several questions concerning the survival of isolated neurons and neuronal stem and progenitor cells (NPCs) have not been answered in the past: (1) If lactate is discussed as a major physiological substrate of neurons, do neurons and NPCs survive in a glucose-free lactate environment? (2) If elevated levels of glucose are detrimental to neuronal survival during ischemia, do high concentrations of glucose (up to 40 mmol/L) damage neurons and NPCs? (3) Which is the detrimental factor in oxygen glucose deprivation (OGD), lack of oxygen, lack of glucose, or the combination of both? Therefore, in the present study, we exposed rat cortical neurons and NPCs to different concentrations of d-glucose ranging from 0 to 40 mmol/L, or 10 and 20 mmol/L l-lactate under normoxic and anoxic conditions, as well as in OGD. After 24 h, we measured cellular viability by biochemical assays and automated cytochemical morphometry, pH values, bicarbonate, lactate and glucose concentrations in the cell culture media, and caspases activities. We found that (1) neurons and NPCs survived in a glucose-free lactate environment at least up to 24 h, (2) high glucose concentrations >5 mmol/L had no effect on cell viability, and (3) cell viability was reduced in normoxic glucose deprivation to 50% compared to 10 mmol/L glucose, whereas cell viability in OGD did not differ from that in anoxia with lactate which reduced cell viability to 30%. Total caspases activities were increased in the anoxic glucose groups only. Our data indicate that (1) neurons and NPCs can survive with lactate as exclusive metabolic substrate, (2) the viability of isolated neurons and NPCs is not impaired by high glucose concentrations during normoxia or anoxia, and (3) in OGD, low glucose concentrations, but not low oxygen levels are detrimental for neurons and NPCs.  相似文献   

20.
Painted turtles hibernating during winter may endure long-term exposure to low temperature and anoxia. These two conditions may affect the aerobic capacity of a tissue and might be of particular importance to the cardiac muscle normally highly reliant on aerobic energy production. The present study addressed how hibernation affects respiratory characteristics of mitochondria in situ and the metabolic pattern of turtle myocardium. Painted turtles were acclimated to control (25 degrees C), cold (5 degrees C) normoxic and cold anoxic conditions. In saponin-skinned myocardial fibres, cold acclimation increased mitochondrial respiratory capacity and decreased apparent ADP-affinity. Concomitant anoxia did not affect this. Creatine increased the apparent ADP-affinity to similar values in the three acclimation groups, suggesting a functional coupling of creatine kinase to mitochondrial respiration. As to the metabolic pattern, cold acclimation decreased glycolytic capacity in terms of pyruvate kinase activity and increased lactate dehydrogenase (LHD) activity. Concomitant anoxia counteracted the cold-induced decrease in pyruvate kinase activity and increased creatine kinase activity. In conclusion, cold acclimation seems to increase aerobic and decrease anaerobic energy production capacity in painted turtle myocardium. Importantly, anoxia does not affect the mitochondrial functional integrity but seems to increase the capacity for anaerobic energy production and energy buffering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号