首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that several carbonylated proteins, including glial fibrillary acidic protein, β-actin and β-tubulin, accumulate within cerebellar astrocytes during the chronic phase of myelin-oligodendrocyte glycoprotein (MOG)(35-55) peptide-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. As protein carbonyls cannot be repaired and there is less oxidative stress in chronic than in acute EAE, we hypothesized that the accumulation of carbonylated proteins in these animals may be due to a defect in the degradation of the modified proteins. Alternatively, oxidized proteins in chronic EAE mice may be more resistant to proteolysis. Using lipopolysaccharide-stimulated astrocytes and several protease inhibitors we identified the 20S proteasome as the proteolytic system responsible for the elimination of most oxidized proteins. We also discovered that the chymotrysin-like and caspase-like activities of the 20S proteasome are impaired in chronic EAE, while the amount of proteasome was unchanged. Proteasome failure in these animals was confirmed by the build-up of ubiquitinated proteins, mostly within astrocytes. In a cell-free system, carbonylated proteins from EAE mice with acute and chronic disease seem to be equally sensitive to proteasomal degradation. Altogether, the results support the notion that diminished activity of the 20S proteasome is a major contributor to the accumulation of carbonylated proteins in astrocytes of chronic EAE mice.  相似文献   

2.
To study the response of 20S proteasome in wheat (Triticum aestivum L.) roots to salt stress, the root tips from wheat seedlings treated with 200 mM NaCl for different times were used for studying its carbonyl level, caseinolytic activity, protein abundance and other biochemical characteristics. The contents of carbonylated and ubiquitinated proteins (Ub-P) were also investigated. During this stressed process, both the productive rate of O2 and the content of H2O2 gradually increased, with the concomitant increase in carbonyl level of total soluble proteins and 20S proteasome, together with the gradual increase in the activities of the total and 20S proteasome in salt-treated root tips. However, the amounts of 20S proteasome decreased particularly during this process. Moreover, metal-catalyzed oxidation of proteins from control plants in vitro validated that the oxidative modification also could increase the activity of 20S proteasome, but decrease its abundance. In addition, the amounts of Ub-P with molecular weights above 35 kDa remained similar to the control plants, but that below 35 kDa decreased significantly in treated root tips. The changes in the proteasome activity and amount argue in favor of the active involvement of this proteolytic system in salt-stressed plants.  相似文献   

3.
Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative and infectious trypomastigotes (metacyclogenesis). No peaks of ubiquitin-mediated degradation were observed and the profile of ubiquitinated conjugates was similar at all stages of differentiation. However, an analysis of carbonylated proteins showed significant variation in oxidized protein levels at the various stages of differentiation and the proteasome inhibition also increased oxidized protein levels. Our data suggest that different proteasome complexes coexist during metacyclogenesis. The 20S proteasome may be free or linked to regulatory particles (PA700, PA26 and PA200), at specific cell sites and the coordinated action of these complexes would make it possible for proteolysis of ubiquitin-tagged proteins and oxidized proteins, to coexist in the cell.  相似文献   

4.
The major environmental influence for epidermal cells is sun exposure and the harmful effect of UV radiation on skin is related to the generation of reactive oxygen species that are altering cellular components including proteins. It is now well established that the proteasome is responsible for the degradation of oxidized proteins. Therefore, the effects of UV-irradiation on proteasome have been investigated in human keratinocyte cultures. Human keratinocytes were irradiated with 10 J/cm(2) of UVA and 0.05 J/cm(2) of UVB and proteasome peptidase activities were measured in cell lysates using fluorogenic peptides. All three peptidase activities were decreased as early as 1 h and up to 24 h after irradiation of the cells. Increased levels of oxidized and ubiquitinated proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal were also observed in irradiated cells. However, immunopurified 20S proteasome exhibited no difference in both peptidase specific activities and 2D gel pattern of subunits in irradiated cells, ruling out the possibility that the 20S proteasome could be a target for the UV-induced damage. Finally, extracts from irradiated keratinocytes were able to inhibit degradation by the proteasome, demonstrating the presence of endogeneous inhibitors, including 4-hydroxy-2-nonenal modified proteins, generated upon UV-irradiation.  相似文献   

5.
The S-nitrosylated proteoglycan glypican-1 recycles via endosomes where its heparan sulfate chains are degraded into anhydromannose-containing saccharides by NO-catalyzed deaminative cleavage. Because heparan sulfate chains can be associated with intracellular protein aggregates, glypican-1 autoprocessing may be involved in the clearance of misfolded recycling proteins. Here we have arrested and then reactivated NO-catalyzed cleavage in the absence or presence of proteasome inhibitors and analyzed the products present in endosomes or co-precipitating with proteasomes using metabolic radiolabeling and immunomagnet isolation as well as by confocal immunofluorescence microscopy. Upon reactivation of deaminative cleavage in T24 carcinoma cells, [(35)S]sulfate-labeled degradation products appeared in Rab7-positive vesicles and co-precipitated with a 20 S proteasome subunit. Simultaneous inhibition of proteasome activity resulted in a sustained accumulation of degradation products. We also demonstrated that the anhydromannose-containing heparan sulfate degradation products are detected by a hydrazide-based method that also identifies oxidized, i.e. carbonylated, proteins that are normally degraded in proteasomes. Upon inhibition of proteasome activity, pronounced colocalization between carbonyl-staining, anhydro-mannose-containing degradation products, and proteasomes was observed in both T24 carcinoma and N2a neuroblastoma cells. The deaminatively generated products that co-precipitated with the proteasomal subunit contained heparan sulfate but were larger than heparan sulfate oligosaccharides and resistant to both acid and alkali. However, proteolytic degradation released heparan sulfate oligosaccharides. In Niemann-Pick C-1 fibroblasts, where deaminative degradation of heparan sulfate is defective, carbonylated proteins were abundant. Moreover, when glypican-1 expression was silenced in normal fibroblasts, the level of carbonylated proteins increased raising the possibility that deaminative heparan sulfate degradation is involved in the clearance of misfolded proteins.  相似文献   

6.
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.  相似文献   

7.
Sodium arsenite (NA) and cadmium chloride (CdCl(2)) are relatively abundant environmental toxicants that have multiple toxic effects including carcinogenesis, dysfunction of gene regulation and DNA and protein damage. In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with concentrations of NA (20-30 μM) or CdCl(2) (100-200 μM) that induced HSP30 and HSP70 accumulation also produced an increase in the relative levels of ubiquitinated protein. Actin protein levels were unchanged in these experiments. In time course experiments, the levels of ubiquitinated protein and HSPs increased over a 24h exposure to NA or CdCl(2). Furthermore, treatment of cells with NA or CdCl(2) reduced the relative levels of proteasome chymotrypsin (CT)-like activity compared to control. Interestingly, pretreatment of cells with the HSP accumulation inhibitor, KNK437, prior to NA or CdCl(2) exposure decreased the relative levels of ubiquitinated protein as well as HSP30 and HSP70. A similar finding was made with ubiquitinated protein induced by proteasomal inhibitors, MG132 and celastrol, known to induce HSP accumulation in A6 cells. However, the NA- or CdCl(2)-induced decrease in proteasome CT-like activity was not altered by KNK437 pretreatment. This study has shown for the first time in poikilothermic vertebrates that NA and CdCl(2) can inhibit proteasomal activity and that there is a possible association between HSP accumulation and the mechanism of protein ubiquitination.  相似文献   

8.
The proteasome represents a major intracellular proteolytic system responsible for the degradation of oxidized and ubiquitinated proteins in both the nucleus and cytoplasm. We have previously reported that proteasome undergoes modification by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and exhibits declines in peptidase activities during cardiac ischemia/reperfusion. This study was undertaken to characterize the effects of HNE on the structure and function of the 20S proteasome. To assess potential tissue-specific differences in the response to HNE, we utilized purified 20S proteasome from heart and liver, tissues that express different proteasome subtypes. Following incubation of heart and liver 20S proteasome with HNE, changes in the 2D gel electrophoresis patterns and peptidase activities of the proteasome were evaluated. Proteasome subunits were identified by mass spectrometry prior to and following treatment with HNE. Our results demonstrate that specific subunits of the 20S proteasome are targeted for modification by HNE and that modified proteasome exhibits selective alterations in peptidase activities. The results provide evidence for a likely mechanism of proteasome inactivation in response to oxidative stress particularly during cardiac ischemia/reperfusion.  相似文献   

9.
After oxidative stress, proteins that are oxidatively modified are degraded by the 20S proteasome. However, several studies have documented an enhanced ubiquitination of yet unknown proteins. Because ubiquitination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However, we were able to confirm an increase in ubiquitinated proteins 16 h after oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide-treated cells, as well as from control cells and cells treated with lactacystin, an irreversible proteasome inhibitor, and identified some of these proteins by MALDI tandem mass spectrometry. As a result we obtained 24 different proteins that can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified, ubiquitinated proteins confirms the thesis that ubiquitination upon oxidative stress is not a random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins.  相似文献   

10.
Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (β1, β2, and β5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS.  相似文献   

11.
Kästle M  Grune T 《Biochimie》2011,93(6):1076-1079
A substantial part of soluble, oxidized proteins are degraded by the proteasome. However, it is still under debate whether these oxidized proteins are degraded by the 26S proteasome in an ubiquitin-dependent way or in an ubiquitin-independent way by the 20S proteasome. Therefore, we treated cells with H2O2 and UV-A irradiation and detected protein carbonyls and ubiquitination by immunoblotting. Separation of ubiquitinated proteins from non-ubiquitinated reveals that most oxidized proteins are not ubiquitinated.  相似文献   

12.
Degradation of oxidized proteins by the 20S proteasome   总被引:27,自引:0,他引:27  
Davies KJ 《Biochimie》2001,83(3-4):301-310
Oxidatively modified proteins are continuously produced in cells by reactive oxygen and nitrogen species generated as a consequence of aerobic metabolism. During periods of oxidative stress, protein oxidation is significantly increased and may become a threat to cell survival. In eucaryotic cells the proteasome has been shown (by purification of enzymatic activity, by immunoprecipitation, and by antisense oligonucleotide studies) to selectively recognize and degrade mildly oxidized proteins in the cytosol, nucleus, and endoplasmic reticulum, thus minimizing their cytotoxicity. From in vitro studies it is evident that the 20S proteasome complex actively recognizes and degrades oxidized proteins, but the 26S proteasome, even in the presence of ATP and a reconstituted functional ubiquitinylating system, is not very effective. Furthermore, relatively mild oxidative stress rapidly (but reversibly) inactivates both the ubiquitin activating/conjugating system and 26S proteasome activity in intact cells, but does not affect 20S proteasome activity. Since mild oxidative stress actually increases proteasome-dependent proteolysis (of oxidized protein substrates) the 20S 'core' proteasome complex would appear to be responsible. Finally, new experiments indicate that conditional mutational inactivation of the E1 ubiquitin-activating enzyme does not affect the degradation of oxidized proteins, further strengthening the hypothesis that oxidatively modified proteins are degraded in an ATP-independent, and ubiquitin-independent, manner by the 20S proteasome. More severe oxidative stress causes extensive protein oxidation, directly generating protein fragments, and cross-linked and aggregated proteins, that become progressively resistant to proteolytic digestion. In fact these aggregated, cross-linked, oxidized proteins actually bind to the 20S proteasome and act as irreversible inhibitors. It is proposed that aging, and various degenerative diseases, involve increased oxidative stress (largely from damaged and electron 'leaky' mitochondria), and elevated levels of protein oxidation, cross-linking, and aggregation. Since these products of severe oxidative stress inhibit the 20S proteasome, they cause a vicious cycle of progressively worsening accumulation of cytotoxic protein oxidation products.  相似文献   

13.
蛋白酶体结构和功能研究进展   总被引:3,自引:0,他引:3  
蛋白酶体是真核细胞内依赖ATP的蛋白质水解途径的重要成分,负责大多数细胞内蛋白质的降解. 20 S蛋白酶体有多种肽酶活性,其活性位点为Thr. 19 S复合物与20 S蛋白酶体结合成为26 S复合物,能降解泛素化蛋白.近几年来,蛋白酶体的分子组成、亚基、生化机理、胞内功能等方面的研究取得了明显进展.  相似文献   

14.
The present study was designed to investigate the role of calpain and the proteasome in the removal of oxidized neuronal cytoskeletal proteins in myelin basic protein-induced experimental autoimmune encephalomyelitis (EAE). To this end, EAE rats received a single intrathecal injection of calpeptin or epoxomicin at the first sign of clinical disease. Forty-eight hours later, animals were sacrificed and lumbar spinal cord segments were dissected and used for biochemical analyses. The results show that calpain and proteasome activity is specifically, but partially, inhibited with calpeptin and epoxomicin, respectively. Calpain inhibition causes an increase in total protein carbonylation and in the amount of neurofilament proteins (NFPs), β-tubulin and β-actin that were spared from degradation, but no changes are seen in the oxidation of any of three NFPs. By contrast, proteasome inhibition has no effect on total protein carbonylation or cytoskeletal protein degradation but increases the amount of oxidized NFH and NFM. These results suggest that while the proteasome may contribute to removal of oxidized NFPs, calpain is the main protease involved in degradation of neuronal cytoskeleton and does not preferentially targets oxidized NFPs species in acute EAE. Different results were obtained in a cell-free system, where calpain inhibition rises the amount of oxidized NFH, and proteasome inhibition fails to change the oxidation state of the NFPs. The later finding suggests that the preferential degradation of oxidized NFH and NFM in vivo by the proteasome occurs via the 26S and not the 20S particle.  相似文献   

15.
Glucose-6-phosphate dehydrogenase (G6PD) was treated with various concentrations of hypochlorite, which is produced by myeloperoxidase and is one of the most important oxidants during inflammatory processes. Inhibition of enzymatic activity, protein fragmentation, and proteolytic susceptibility toward the isolated 20S proteasome of G6PD were investigated. With rising hypochlorite concentrations, an increased proteasomal degradation of G6PD was measured. This occurred at higher hypochlorite concentrations than G6PD inactivation and at lower levels than G6PD fragmentation. The proteolytic activities of the 20S proteasome itself was determined by degradation of oxidized model proteins and cleavage of the synthetic proteasome substrate suc-LLVY-MCA. Proteasome activities remained intact at hypochlorite concentrations in which G6PD is maximally susceptible to proteasomal degradation. Only higher hypochlorite concentrations could decrease the proteolytic activities of the proteasome, which was accompanied by disintegration and fragmentation of the proteasome and proteasome subunits. Therefore, we conclude that the 20S proteasome can degrade proteins moderately damaged by hypochlorite and could contribute to an increased protein turnover in cells exposed to inflammatory stress.  相似文献   

16.
Numerous proteins are known to be lost following myocardial ischemia/reperfusion yet little is known about the mediating proteinases. This study examines the hypothesis that proteasome plays a significant role in the removal of proteins oxidized during myocardial ischemia. Proteasome was inhibited by perfusing isolated rat hearts with buffer containing lactacystin, 2 micromol/L, for 10 min, which resulted in 51 and 42% decreases in 20S and 26S proteasome activities that persisted for a minimum of 90 min. Lactacystin pretreatment had minor effects on postischemic recovery of isolated hearts exposed to 30 min global ischemia and 60 min reperfusion. Protein carbonyl content of lactacystin-pretreated ischemic hearts was significantly (P < 0.05) increased. One band with approximate molecular mass of 50 kDa is known to contain oxidized actin. Actin degradation was quantitated by analysis of 3-methylhistidine which was significantly (P < 0.05) decreased by 15% following 30 min ischemia and 60 min reperfusion. Pretreatment of ischemic hearts with lactacystin prevented much of the loss (-6.5%) of 3-methylhistidine. Probing immunoprecipitated actin with an antibody specific for ubiquitin revealed no bands containing ubiquitinated homologues of this protein. These observations support the conclusion that proteasome mediates removal of some of the proteins oxidized during myocardial ischemia/reperfusion, and that at least oxidized actin is removed by the 20S proteasome.  相似文献   

17.
Metal-catalyzed oxidation reactions target amino acids in the metal binding pocket of proteins. Such oxidation reactions generally result in either preferential degradation of the protein or accumulation of a catalytically inactive pool of protein with age. Consistently, levels of oxidized proteins have been shown to increase with age. The segmental, progeroid disorder Werner syndrome results from loss of the Werner syndrome protein (WRN). WRN is a member of the RecQ family of DNA helicases and possesses exonuclease and ATP-dependent helicase activities. Furthermore, each of the helicase and exonuclease domains of WRN contains a metal binding pocket. In this report we examined for metal-catalyzed oxidation of WRN in the presence of iron or copper. We found that WRN was oxidized in vitro by iron but not by copper. Iron-mediated oxidation resulted in the inhibition of both WRN helicase and exonuclease activities. Oxidation of WRN also inhibited binding to several known protein partners. In addition, we did not observe degradation of oxidized WRN by the 20 S proteasome in vitro. Finally, exposure of cells to hydrogen peroxide resulted in oxidation of WRN in vivo. Therefore, our results demonstrate that WRN undergoes metal-catalyzed oxidation in the presence of iron, and iron-mediated oxidation of WRN likely results in the accumulation of a catalytically inactive form of the protein, which may contribute to age-related phenotypes.  相似文献   

18.
To investigate molecular mechanisms linking inflammation with neurodegeneration, we treated neuronal cultures with prostaglandins (PGs), which are mediators of inflammation. PGA1, D2, J2, and Delta12-PGJ2, but not PGE2, reduced the viability and raised the levels of ubiquitinated proteins in the neuronal cells. PGJ2 and its metabolite, Delta12-PGJ2, were the most potent of the four neurotoxic PGs tested in inducing both effects. To address the mechanism by which these agents lead to the accumulation of ubiquitinated proteins, we tested their effects on neuronal ubiquitin hydrolases UCH-L1 and UCH-L3 as well as on proteasome activity. Notably, Delta12-PGJ2 inhibited the activities of UCH-L1 (K(i) approximately 3.5 microM) and UCH-L3 (K(i) approximately 8.1 microM) without affecting proteasome activity. Intracellular aggregates containing ubiquitinated proteins were detected in Delta12-PGJ2-treated cells, indicating that these aggregates can form independently of proteasome inhibition. In conclusion, impairment of ubiquitin hydrolase activity, such as triggered by Delta12-PGJ2, may be an important contributor to neurodegeneration associated with accumulation of ubiquitinated proteins and inflammation.  相似文献   

19.
Proteasome inactivation upon aging and on oxidation-effect of HSP 90   总被引:2,自引:0,他引:2  
Increases of oxidatively modified protein in the cell have been associated with the aging process. Such an accumulation of damaged protein may be the result of increase in the rate of protein oxidation and/or decrease in the rate of degradation of oxidized protein. The multicatalytic proteinase or proteasome is known to be the major proteolytic system involved in the removal of oxidized protein. We have reported that, after isolation of the 20S proteasome from the liver of young and old male Fischer 344 rat, out of the three peptidase activities (chymotrypsin-like, trypsin-like and peptidyl-glutamyl peptide hydrolase) we assayed with fluorogenic peptides, the peptidyl-glutamyl peptide hydrolase activity was declining with age to a value approximately 50% of that observed for protease purified from young rats. The proteasome was subjected to metal catalyzed oxidation to determine the susceptibility of the different peptidase activities to oxidative inactivation. Both trypsin-like and peptidyl-glutamyl peptide hydrolase activities were found sensitive to oxidation. Treatment of the proteasome with 4-hydroxy-2-nonenal, a major lipid peroxidation product, was also found to inactivate the trypsin-like activity. However, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation in proteasome preparations contaminated with HSP 90, a protein that often copurifies with the proteasome. Upon addition of HSP 90 to pure 20S active proteasome, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation and from inactivation by treatment with 4-hydroxy-2-nonenal. These results suggest a possible intervention of HSP 90 in response to oxidative stress in preventing the inactivation of the proteasome by oxidative damage. Abbreviations: AAF-amc – Ala-Ala-Phe-7-amido-4-methylcoumarin; LSTR-amc – N-t-Boc-Leu-Ser-Thr-Arg-7-amido-4-methylcoumarin; LLE-na – Leu-Leu-Glu-b-naphthylamide; HSP 90: heat shock protein 90, MCP – multicatalytic proteinase or 20S proteasome.  相似文献   

20.
Glycation and glycoxidation protein products are formed upon binding of sugars to NH(2) groups of lysine and arginine residues and have been shown to accumulate during aging and in pathologies such as Alzheimer's disease and diabetes. Because the proteasome is the major intracellular proteolytic system involved in the removal of altered proteins, the effect of intracellular glycation on proteasome function has been analyzed in human dermal fibroblasts subjected to treatment with glyoxal that promotes the formation of N epsilon-carboxymethyl-lysine adducts on proteins. The three proteasome peptidase activities were decreased in glyoxal-treated cells as compared with control cells, and glyoxal was also found to inhibit these peptidase activities in vitro. In addition, the activity of glucose-6-phosphate dehydrogenase, a crucial enzyme for the regulation of the intracellular redox status, was dramatically reduced in glyoxal-treated cells. Further analysis was performed to determine whether glycated proteins are substrates for proteasome degradation. In contrast to the oxidized glucose-6-phosphate dehydrogenase, both N epsilon-carboxymethyl-lysine- and fluorescent-glycated enzymes were resistant to degradation by the 20 S proteasome in vitro, and this resistance was correlated with an increased conformational stability of the glycated proteins. These results provide one explanation for why glycated proteins build up both as a function of disease and aging. Finally, N epsilon-carboxymethyl-lysine-modified proteins were found to be ubiquitinated in glyoxal-treated cells suggesting a potential mechanism by which these modified proteins may be marked for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号