首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which the purinergic agonist adenosine 5'-O-(3 thiotriphosphate) (ATPgammaS) decreases vascular resistance was investigated in the mesenteric and hindlimb vascular beds of the cat. Injections of ATPgammaS into the hindlimb perfusion circuit elicited dose-dependent decreases in perfusion pressure while injections into the mesenteric circuit produced a biphasic response with an initial vasopressor response followed by a vasodepressor response. In the mesenteric vascular bed the pressor response to ATPgammaS was blocked by a P2X1 receptor antagonist. Also an inhibitor of nitric oxide synthase enhanced the vasoconstrictive responses to ATPgammaS. However, the vasodepressor response in the mesenteric bed was not altered by the adminstration of an alpha adrenergic receptor antagonist, a cyclooxygenase inhibitor, a P2Y1 receptor antagonist, or a K+ATP channel blocking agent. These data suggest that the vasopressor response to ATPgammaS in the mesenteric vascular bed of the cat is mediated via P2X1 receptor activation. The differential responses to ATPgammaS in the hindlimb and mesentery suggest differences in purinergic receptor distribution in the vascular system of the cat. In addition, the results suggest that prostaglandin synthesis, P2Y1 receptor activation, alpha receptor inhibition, and K+ATP channels activation play little to no role in mediating the vascular response to ATPgammaS in the mesentery of the cat.  相似文献   

2.
Hemodynamic responses to adenosine, the A(1) receptor agonists N(6)-cyclopentyladenosine (CPA) and adenosine amine congener (ADAC), and the A(2) receptor agonist 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) were investigated in the hindquarter vascular bed of the cat under constant-flow conditions. Injections of adenosine, CPA, ADAC, CPCA, ATP, and adenosine 5'-O-(3-thiotriphosphate) (ATPgamma S) into the perfusion circuit induced dose-related decreases in perfusion pressure. Vasodilator responses to the A(1) agonists were reduced by the A(1) receptor antagonists KW-3902 and CGS-15943, whereas responses to CPCA were reduced by the A(2) antagonist KF-17837. Vasodilator responses to adenosine were reduced by KW-3902, CGS-15943, and by KF-17837, suggesting a role for both A(1) and A(2) receptors. Vasodilator responses to ATP and the nonhydrolyzable ATP analog ATP gamma S were not attenuated by CGS-15943 or KF-17837. After treatment with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester, the cyclooxygenase inhibitor sodium meclofenamate, or the ATP-dependent K(+) (K) channel antagonists U-37883A or glibenclamide, responses to adenosine and ATP were not altered. Responses to adenosine, CPA, and CPCA were increased in duration by rolipram, a type 4 cAMP phosphodiesterase inhibitor, but were not altered by zaprinast, a type 5 cGMP phosphodiesterase inhibitor. When blood flow was interrupted for a 30-s period, the magnitude and duration of the reactive vasodilator response were reduced by A(1) and A(2) receptor antagonists. These data suggest that vasodilator responses to adenosine and the A(1) and A(2) agonists studied are not dependent on the release of cyclooxygenase products, nitric oxide, or the opening of K channels in the regional vascular bed of the cat. The present data suggest a role for cAMP in mediating responses to adenosine and suggest that vasodilator responses to adenosine and to reactive hyperemia are mediated in part by A(1) and A(2) receptors in the hindquarter vascular bed of the cat.  相似文献   

3.
Responses to rat (r) adrenomedullin (ADM) and human (h) ADM were compared in the hindlimb vascular bed of the cat under conditions of controlled blood flow. Intra-arterial injections of rADM and hADM in doses of 0.03–1 nmol caused dose-related decreases in hindlimb perfusion pressure. In terms of relative vasodilator activity, rADM was similar to hADM. The time course of the vasodilator response and the recovery half times (T1/2) for the vasodilator response to rADM and hADM were not significantly different. Decreases in hindlimb perfusion pressure in response to rADM and hADM were not altered by the calcitonin gene-related peptide receptor antagonist, rCGRP(8–37), at the same time, vasodilator responses to calcitonin gene-related peptide (CGRP) were significantly reduced. The T1/2 of the vasodilator response to rADM and hADM were significantly greater after administration of the cAMP-selective, type IV phosphodiesterase inhibitor, rolipram. These data demonstrate that decreases in hindlimb perfusion pressure in response to rADM and hADM are similar and that vasodilator responses to rADM are not dependent on the activation of CGRP receptors in the hindlimb vascular bed of the cat. These data further suggest that decreases in hindlimb perfusion pressure in response to rADM are mediated by smooth muscle increases in cAMP levels.  相似文献   

4.
ATP is co-localized with norepinephrine at the sympathetic nerve terminals and may be released simultaneously upon neuronal stimulation, which results in activation of purinergic receptors. To examine whether leptin synthesis and lipolysis are influenced by P2 purinergic receptor activation, the effects of ATP and other nucleotides on leptin secretion and glycerol release have been investigated in differentiated rat white adipocytes. Firstly, insulin-induced leptin secretion was inhibited by nucleotide treatment with the following efficacy order: 3'-O-(4-benzoyl)benzoyl ATP (BzATP) > ATP > UTP. Secondly, treatment of adipocytes with ATP increased both intracellular Ca(2+) concentration and cAMP content. Intracellular calcium concentration was increased by ATP and UTP, but not BzATP, an effect attributed to phospholipase C-coupled P2Y(2). On the other hand, cAMP was generated by treatment with BzATP and ATPgammaS, but not UTP, indicating functional expression of adenylyl cyclase-coupled P2Y(11) receptors in white adipocytes. Thirdly, lipolysis was significantly activated by BzATP and ATP, which correlated with the characteristics of the P2Y(11) subtype. Taken together, the data presented here suggest that white adipocytes express at least two different types of P2Y receptors and that activation of P2Y(11) receptor might be involved in inhibition of leptin production and stimulation of lipolysis, suggesting that purinergic transmission can play an important role in white adipocyte physiology.  相似文献   

5.
Interactions between different selective P2 receptor agonists have been used as tools to identify different P2 receptor subtypes. In the present study, we examined the P2 receptor subtypes and the mechanisms of potentiation of UTP contraction (P2Y contraction) by alpha,beta-methylene ATP [(2-carboxypiperazin-4-yl)propyl-1-phosphanoic acid (CPP), a P2X agonist] using isometric tension in the denuded rabbit basilar artery. We made the following observations: 1). a predominant P2X receptor contraction was observed in the rabbit ear artery by the rank order of CPP > 2-methylthioATP > ATP > UTP; 2). functional P2Y receptors were observed in the rabbit basilar artery by the rank order of UTP > ATP = CPP = 2-methylthioATP; 3). CPP potentiated UTP-, ATP-, and ATPgammaS-induced contractions, possibly by activation of P2Y4 receptors because ATPgammaS does not activate P2Y6 receptors; and 4). ectonucleotidase did not play a predominant role in the potentiative effect of CPP because Evans blue, Ca(2+)-free medium, or divalent cation Ni(2+) did not affect the effect of CPP. Evans blue potentiated the contraction by UTP but not by ATP or ATPgammaS. We conclude that CPP enhanced P2Y4-mediated contraction in the rabbit basilar artery, and the influence by ectonucleotidases on CPP-potentiation remains unclear.  相似文献   

6.
Nishi H  Hori S  Niitsu A  Kawamura M 《Life sciences》2004,74(9):1181-1190
The study was aimed to investigate the existence of at least two kinds of P2Y receptors linked to steroidogenesis in bovine adrenocortical fasciculata cells (BAFCs). Extracellular nucleotides facilitated steroidogenesis in BAFCs. The potency order was UTP > adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) > ATP > 2-methylthio ATP (2MeSATP) > adenosine 5'-(beta-thio) diphosphate (ADPbetaS) > alpha,beta-methylene ATP (alpha,beta-me-ATP), beta,gamma-methylene ATP (beta,gamma -me-ATP). ATPgammaS (10-100 microM) remarkably stimulated both total inositol phosphates (IPs) production and cyclic AMP (cAMP) accumulation. Competitive displacement experiments by using [35S]ATPgammaS as a radioactive ligand in BAFCs showed that the potency under these unlabelled ligands was ATPgammaS > ATP > ADPbetaS > 2MeSATP > UTP > alpha,beta-me-ATP, beta,gamma-me-ATP. These suggest that two different binding sites of [35S]ATPgammaS, namely P2Y receptors, exist in BAFCs, and that these receptors are linked to steroidogenesis via distinct second messenger systems in the cells.  相似文献   

7.
8.
We have recently characterised the presence of a Ca2(+)-mobilising receptor for ATP which stimulates exocytosis in differentiated HL60 cells. Here we demonstrate that the undifferentiated HL60 cells also respond to extracellular ATP by stimulating an increase in inositol phosphates and exocytosis. Of the nucleotides (ATP, UTP, ITP, ATP gamma S, AppNHp, XTP, CTP, GTP, 8-Br-ATP and GTP gamma S) that were active in stimulating inositol phosphate formation, only UTP, ATP, ITP, ATP gamma S and AppNHp were active in stimulating secretion. On differentiation, the extent of secretion due to the purinergic agonists ATP, ITP, ATP gamma S and AppNHp remained unchanged whilst secretion due to UTP, a pyrimidine, was substantially increased. These results indicate that the effect of ATP and UTP may be mediated via separate purinergic and pyrimidinergic receptors, respectively.  相似文献   

9.
Microglia migrate rapidly to lesions in the central nervous system (CNS), presumably in response to chemoattractants including ATP released directly or indirectly by the injury. Previous work on the leech has shown that nitric oxide (NO), generated at the lesion, is both a stop signal for microglia at the lesion and crucial for their directed migration from hundreds of micrometers away within the nerve cord, perhaps mediated by a soluble guanylate cyclase (sGC). In this study, application of 100 μM ATP caused maximal movement of microglia in leech nerve cords. The nucleotides ADP, UTP, and the nonhydrolyzable ATP analog AMP‐PNP (adenyl‐5′‐yl imidodiphosphate) also caused movement, whereas AMP, cAMP, and adenosine were without effect. Both movement in ATP and migration after injury were slowed by 50 μM reactive blue 2 (RB2), an antagonist of purinergic receptors, without influencing the direction of movement. This contrasted with the effect of the NO scavenger cPTIO (2‐(4‐carboxyphenyl)‐4,4,5,5‐teramethylimidazoline‐oxyl‐3‐oxide), which misdirected movement when applied at 1 mM. The cPTIO reduced cGMP immunoreactivity without changing the immunoreactivity of eNOS (endothelial nitric oxide synthase), which accompanies increased NOS activity after nerve cord injury, consistent with involvement of sGC. Moreover, the sGC‐specific inhibitor LY83583 applied at 50 μM had a similar effect, in agreement with previous results with methylene blue. Taken together, the experiments support the hypothesis that ATP released directly or indirectly by injury activates microglia to move, whereas NO that activates sGC directs migration of microglia to CNS lesions. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

10.
We have used the patch-clamp technique to study the effects of changing extracellular ATP concentration on the activity of the small-conductance potassium channel (SK) on the apical membrane of the mouse cortical collecting duct. In cell-attached patches, the channel conductance and kinetics were similar to its rat homologue. Addition of ATP to the bathing solution of split-open single cortical collecting ducts inhibited SK activity. The inhibition of the channel by ATP was reversible, concentration dependent (K(i) = 64 microM), and could be completely prevented by pretreatment with suramin, a specific purinergic receptor (P(2)) blocker. Ranking of the inhibitory potency of several nucleotides showed strong inhibition by ATP, UTP, and ATP-gamma-S, whereas alpha, beta-Me ATP, and 2-Mes ATP failed to affect channel activity. This nucleotide sensitivity is consistent with P(2)Y(2) purinergic receptors mediating the inhibition of SK by ATP. Single channel analysis further demonstrated that the inhibitory effects of ATP could be elicited through activation of apical receptors. Moreover, the observation that fluoride mimicked the inhibitory action of ATP suggests the activation of G proteins during purinergic receptor stimulation. Channel inhibition by ATP was not affected by blocking phospholipase C and protein kinase C. However, whereas cAMP prevented channel blocking by ATP, blocking protein kinase A failed to abolish the inhibitory effects of ATP. The reduction of K channel activity by ATP could be prevented by okadaic acid, an inhibitor of protein phosphatases, and KT5823, an agent that blocks protein kinase G. Moreover, the effect of ATP was mimicked by cGMP and blocked by L-NAME (N(G)-nitro-l-arginine methyl ester). We conclude that the inhibitory effect of ATP on the apical K channel is mediated by stimulation of P(2)Y(2) receptors and results from increasing dephosphorylation by enhancing PKG-sensitive phosphatase activity.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF), a neuromodulator involved in nociceptive hypersensitivity in the central nervous system, is also expressed in synoviocytes of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. We investigated the role of P2 purinoreceptors in the induction of BDNF expression in synovial fibroblasts (SF) of OA and RA patients. Cultured SF from patients with symptomatic knee OA and RA were stimulated with purinoreceptor agonists ATP, ADP, or UTP. The expression of BDNF mRNA was measured by quantitative TaqMan PCR. BDNF release into cell culture supernatants was monitored by ELISA. P2X4 expression in synovial tissue was detected by immunohistochemistry. Endogenous P2X4 expression was decreased by siRNA transfection before ATP stimulation. Kinase pathways were blocked before ATP stimulation. BDNF mRNA expression levels in OASF were increased 2 h and 5 h after ATP stimulation. Mean BDNF levels in cell culture supernatants of unstimulated OASF and RASF were 19 (±9) and 67 (±49) pg/ml, respectively. BDNF levels in SF supernatants were only elevated 5 h after ATP stimulation. BDNF mRNA expression in OASF was induced both by P2X receptor agonists ATP and ADP, but not by UTP, an agonist of P2Y purinergic receptors. The ATP-induced BDNF mRNA expression in OASF was decreased by siRNA-mediated reduction of endogenous P2X4 levels compared to scrambled controls. Inhibition of p38, but not p44/42 signalling reduced the ATP-mediated BDNF mRNA induction. Here we show a functional role of the purinergic receptor P2X4 and p38 kinase in the ATP-induced expression and release of the neurotrophin BDNF in SF.  相似文献   

12.
ATP has been reported to inhibit or stimulate lymphoid cell proliferation, depending on the origin of the cells. Agents that increase cAMP, such as PGE(2), inhibit human CD4(+) T cell activation. We demonstrate that several ATP derivatives increase cAMP in both freshly purified and activated human peripheral blood CD4(+) T cells. The rank order of potency of the various nucleotides was: adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) approximately 2'- and 3'-O-(4-benzoylbenzoyl) ATP (BzATP) > ATP > 2-methylthio-ATP > dATP, 2-propylthio-beta,gamma-dichloromethylene-D-ATP, UDP, UTP. This effect did not involve the activation of A(2)Rs by adenosine or the synthesis of prostaglandins. ATPgammaS had no effect on cytosolic calcium, whereas BzATP induced an influx of extracellular calcium. ATPgammaS and BzATP inhibited secretion of IL-2, IL-5, IL-10, and IFN-gamma; expression of CD25; and proliferation after activation of CD4(+) T cells by immobilized anti-CD3 and soluble anti-CD28 Abs, without increasing cell death. Taken together, our results suggest that extracellular adenine nucleotides inhibit CD4(+) T cell activation via an increase in cAMP mediated by an unidentified P2YR, which might thus constitute a new therapeutic target in immunosuppressive treatments.  相似文献   

13.
Inhibitory effects of various purinergic compounds on the Mg(2+)-dependent enzymatic hydrolysis of [(3)H]ATP in rat liver plasma membranes were evaluated. Rat liver enzyme ecto-ATPase has a broad nucleotide-hydrolyzing activity, displays Michaelis-Menten kinetics with K(m) for ATP of 368+/-56 microM and is not sensitive to classical inhibitors of the ion-exchange and intracellular ATPases. P2-antagonists and diadenosine tetraphosphate (Ap(4)A) progressively and non-competitively inhibited ecto-ATPase activity with the following rank order of inhibitory potency: suramin (pIC(50), 4.570)>Reactive blue 2 (4.297)&z.Gt;Ap(4)A (3. 268)>pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (2. 930). Slowly hydrolyzable P2 agonists ATPgammaS, ADPbetaS, alpha, beta-methylene ATP and beta,gamma-methylene ATP as well as the diadenosine polyphosphates Ap(3)A and Ap(5)A did not exert any inhibitory effects on the enzyme activity at concentration ranges of 10(-4)-10(-3) M. Thin-layer chromatography analysis of the formation of [(3)H]ATP metabolites indicated the presence of other enzyme activities on liver surface (ecto-ADPase and 5'-nucleotidase), participating in concert with ecto-ATPase in the nucleotide hydrolysis through the stepwise reactions ATP-->ADP-->AMP-->adenosine. A similar pattern of sequential [(3)H]ATP dephosphorylation still occurs in the presence of ecto-ATPase inhibitors suramin, Ap(4)A and PPADS, but the appearance of the ultimate reaction product, adenosine, was significantly delayed. In contrast, hydrolysis of [(3)H]ATP in the presence of Reactive blue 2 only followed the pattern ATP-->ADP, with formation of the subsequent metabolites AMP and adenosine being virtually eliminated. These data suggest that although nucleotide-binding sites of ecto-ATPase are distinct from those of P2 receptors, some purinergic agonists and antagonists can potentiate cellular responses to extracellular ATP through non-specific inhibition of the ensuing pathways of purine catabolism.  相似文献   

14.
Extracellular nucleotides regulate ion transport and mucociliary clearance in human airway epithelial cells (HAECs) via the activation of P2 receptors, especially P2Y(2). Therefore, P2Y(2) receptor agonists represent potential pharmacotherapeutic agents to treat cystic fibrosis (CF). Nucleotides also modulate inflammatory properties of immune cells like dendritic cells (DCs), which play an important role in mucosal immunity. Using DNA-microarray experiments, quantitative RT-PCR and cytokine measurements, we show here that UTP up-regulated approximately 2- to 3-fold the antimicrobial chemokine CCL20 expression and release in primary HAECs cultured on permeable supports at an air-liquid interface (ALI). Both P2Y(2) (ATPgammaS, UTP, INS365) and P2Y(6) (UDP, INS48823) agonists increased CCL20 release. UTP-induced CCL20 release was insensitive to NF-kappaB pathway inhibitors but sensitive to inhibitors of ERK1/2 and p38/MAPK pathways. Furthermore, UTP had no effect on interleukin-(IL)-8 release and reduced the release of both CCL20 and IL-8 induced by TNF-alpha and LPS. Accordingly, UTP reduced the capacity of basolateral supernatants of HAECs treated with TNF-alpha or LPS to induce the chemoattraction of both CD4(+) T lymphocytes and neutrophils. In addition, we show that, in monocyte-derived DCs, ATPgammaS, and UDP but not UTP/INS365-stimulated CCL20 release. Likewise, UDP but not ATPgammaS was also able to increase CCL20 release from monocytes. Pharmacological experiments suggested an involvement of P2Y(11) or P2Y(6) receptors through NF-kappaB, ERK1/2, and p38/MAPK pathways. Altogether, our data demonstrate that nucleotides may modulate chemokine release and leukocyte recruitment in inflamed airways by acting on both epithelial and immune cells. Our results could be relevant for further clinical investigations in CF.  相似文献   

15.
Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed ‘pannexon’. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut.  相似文献   

16.
In most animal cells, hypotonic swelling is followed by a regulatory volume decrease (RVD) thought to prevent cell death. In contrast, goldfish hepatocytes challenged with hypotonic medium (180 mosM, HYPO) increase their volume 1.7 times but remain swollen and viable for at least 5 h. Incubation with ATPgammaS (an ATP analog) in HYPO triggers a 42% volume decrease. This effect is concentration dependent (K(1/2) = 760 nM) and partially abolished by P2 receptor antagonists (64% inhibition). A similar induction of RVD is observed with ATP, UTP, and UDP, whereas adenosine inhibits RVD. Goldfish hepatocytes release more than 500 nM ATP during the first minutes of HYPO with no induction of RVD. The fact that similar concentrations of ATPgammaS did trigger RVD could be explained by showing that ATPgammaS induced ATP release. Finally, we observed that in a very small extracellular volume, hepatocytes do show a 56% RVD. This response was diminished by P2 receptor antagonists (73%) and increased (73%) when the extracellular ATP hydrolysis was inhibited 72%. Using a mathematical model, we predict that during the first 2 min of HYPO exposure the extracellular [ATP] is mainly governed by ATP diffusion and by both nonlytic and lytic ATP release, with almost no contribution from ecto-ATPase activity. We show that goldfish hepatocytes under standard HYPO (large volume) do not display RVD unless this is triggered by the addition of micromolar concentrations of nucleotides. However, under very low assay volumes, sufficient endogenous extracellular [ATP] can build up to induce RVD.  相似文献   

17.
Responses to proadrenomedullin NH2-terminal 20 peptide (hPAMP), a truncated analogue [hPAMP(12–20)], and adrenomedullin (hADM) were investigated in the mesenteric vascular bed of the cat. Under constant-flow conditions, injections of hPAMP, hPAMP(12–20), and hADM caused dose-related decreases in mesenteric perfusion pressure. hADM was 100-fold more potent than hPAMP, and 1000-fold more potent than hPAMP(12–20). Vasodilator responses to hPAMP and hADM were not altered by adrenergic-blocking agents, were similar in innervated and denervated preparations, and were similar when tone was increased by sympathetic nerve stimulation or phenylephrine infusion. Vasodilator responses to hPAMP and hADM were increased in duration by rolipram, a cAMP phosphodiesterase inhibitor. The present data suggest that vasodilator responses to the hPAMP and hADM are mediated by an increase in cAMP and that an interaction with the adrenergic nervous system is not involved.  相似文献   

18.
Purinergic receptors activate diverse signaling cascades and regulate the activity of cell volume-sensitive ion transporters. However, the effects of ATP and other agonists of P2 receptors on cell volume dynamics are only scarcely studied. In the present work, we used the recently developed dual-image surface reconstruction technique to explore the influence of purinergic agonists on cell volume in the C11-Madin-Darby canine kidney cell line resembling intercalated cells from kidney collecting ducts. Unexpectedly, we found that ATP and UTP triggered very robust (55-60%) cell shrinkage that lasted up to 2 h after agonist washout. Purinergic regulation of cell volume required increases in intracellular Ca(2+) and could be partially mimicked by the Ca(2+)-ionophore ionomycin or activation of protein kinase C by 4β-phorbol 12-myristate 13-acetate. Cell shrinkage was accompanied by strong reductions in intracellular K(+) and Cl(-) content measured using steady-state (86)Rb(+) and (36)Cl(-) distribution. Both shrinkage and ion efflux in ATP-treated cells were prevented by the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and by the BK(Ca) channel inhibitors charybdotoxin, iberiotoxin, and paxilline. To evaluate the significance of cell-volume changes in purinergic signaling, we measured the impact of ATP on the expression of the immediate-early gene c-Fos. Thirty-minute treatment with ATP increased c-Fos immunoreactivity by approximately fivefold, an effect that was strongly inhibited by charybdotoxin and completely prevented by NPPB. Overall, our findings suggest that ATP-induced cell-volume changes are partially responsible for the physiological actions of purinergic agonists.  相似文献   

19.
20.
ATP release from erythrocytes in response to low oxygen tension requires an increase in cAMP, the level of which is regulated by phosphodiesterase 3 (PDE3). Such release is defective in erythrocytes of humans with type 2 diabetes (DM2). This study tested a hypothesis that direct delivery of the clinically useful PDE3 inhibitor, cilostazol, to erythrocytes of humans with type 2 diabetes using liposomes would restore low-oxygen tension-induced ATP release. Cilostazol was incorporated into liposomes prepared from dimyristoylphosphatidylcholine (DMPC). Liposome-delivery of cilostazol restored ATP release from DM2 erythrocytes to levels which were not different from that released from non-cilostazol treated healthy erythrocytes under the same conditions. There were no observed adverse effects of the liposomes on either healthy or DM2 erythrocytes. The directed liposomal delivery of PDE inhibitors to erythrocytes may help prevent or slow the development of peripheral vascular disease in individuals with DM2 by restoring an important physiological controller of microvascular perfusion while minimizing side effects associated with systemic delivery of some of these inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号