首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Mycobacterium sp. isolated from oil-contaminated sediments was previously shown to mineralize 55% of the added naphthalene to carbon dioxide after 7 days of incubation. In this paper, we report the initial steps of the degradation of naphthalene by a Mycobacterium sp. as determined by isolation of metabolites and incorporation of oxygen from 18O2 into the metabolites. The results indicate that naphthalene is initially converted to cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene by dioxygenase and monooxygenase catalyzed reactions, respectively. The ratio of the cis to trans-naphthalene dihydrodiol isomers was approximately 25:1. Thin layer and high pressure liquid chromatographic and mass spectrometric techniques indicated that besides the cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene, minor amounts of ring cleavage products salicylate and catechol were also formed. Thus the formation of both cis and trans-naphthalene dihydrodiols by the Mycobacterium sp. is unique. The down-stream reactions to ring cleavage products proceed through analogous dioxygenase reactions previously reported for the bacterial degradation of naphthalene.  相似文献   

2.
1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used.  相似文献   

3.
The ability of Pseudomonas fluorescens 26K strain to utilize naphthalene at concentrations up to 600 mg/liter as the sole source of carbon and energy in mineral liquid media was shown. Using HPLC, TLC, and mass-spectrometry, the intermediates of naphthalene transformation by this strain were identified as naphthalene cis-1,2-dihydrodiol, salicylaldehyde, salicylate, catechol, 2-hydroxymuconic semialdehyde, and 1-naphthol. Catechol 2,3-dioxygenase (a homotetramer with native molecular mass 125 kDa) and NAD+-dependent homohexameric naphthalene cis-1,2-dihydrodiol dehydrogenase with native molecular mass 160 kDa were purified from crude extract of the strain and characterized. NAD+-dependent homodimeric salicylaldehyde dehydrogenase with molecular mass 110 kDa was purified and characterized for the first time. Based on the data, a pathway of naphthalene degradation by P. fluorescens 26K is suggested.  相似文献   

4.
The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon–carbon double bond were cleaved at the carbon–carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.  相似文献   

5.
Klebsiella oxytoca, isolated from cyanide-containing wastewater, was able to utilize many nitriles as sole source of nitrogen. The major objective of this study was to explore the ability of K. oxytoca to utilize some nitriles and then further evaluate the pathways of transformation of cyanide compounds by K. oxytoca. Results from this study indicate that succinonitrile and valeronitrile were the most optimal sources of nitrogen for the growth of K. oxytoca. The biodegradation of acetonitrile proceeded with the formation of acetamide followed by acetic acid. The production of ammonia was also detected in this biodegradation experiment. Similar results were observed in the propionitrile biodegradation experiments. Collectively, this study suggests that the breakdown of acetonitrile or propionitrile by this bacterium was via a two-step enzymatic hydrolysis with amides as the intermediates and organic acids plus with ammonia as the end products.  相似文献   

6.
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene → naphthalene-1,8-dicarboxylic acid → 1-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol → cis,cis-muconic acid.  相似文献   

7.
Microbial Metabolism of Quinoline by Comamonas sp.   总被引:1,自引:0,他引:1  
An aerobic bacterial strain which can use quinoline as the sole carbon and energy source has been isolated from activated sludge and identified as Comamonas sp. The microbial metabolism of quinoline by this strain has been investigated. A pH 8 and a temperature of 30 °C were the optimum degradation conditions of quinoline. Five intermediates including 2-oxo-1,2-dihydroquinoline, 5-hydroxy-6-(2-carboxyethenyl)-1H-2-pyridone, 6-hydroxy-2-oxo-1,2-dihydroquinoline, 5,6-dihydroxy-2-oxo-1,2-dihydroquinoline, and 8-hydroxy-2-oxo-1,2-dihydroquinoline were found during quinoline biodegradation. The presence of these intermediates suggested that at least two pathways were involved for quinoline degradation by Comamonas sp. and a reasonable degradation route was proposed to account for the intermediates observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A membrane-bound enzyme, which catalyses the cleavage of fatty acid hydroperoxides to carbonyl fragments, has been partially purified from cucumber fruit. The isomeric 9- and 13-hydroperoxydienes (but not the hydroxydienes) derived from both linoleic and linolenic acids are cleaved by the enzyme but a mixture of 9- and 10-hydroperoxymonoenoic derivatives of oleic acid was not attacked. No evidence was obtained for free intermediates between fatty acid hydroperoxides and the cleavage products. Major volatile products were: cis-3-nonenal and hexanal (from 9- and 13-hydroperoxides of linoleic acid respectively) or cis-3,cis-6-nonadienal and cis-3-hexenal (from 9- and 13-hydroperoxides of linolenic acid). The increase in the ratio of cis-3- to trans-2-enal products with enzyme purification indicated that cis-3-enals are the immediate cleavage products and that the trans-2- forms are produced by subsequent isomerization.  相似文献   

9.
The degradation of recalcitrant pollutants in contaminated soils and waters could be facilitated by broadening the degradative capabilities of indigenous microbes by the conjugal transfer of catabolic genes. The feasibility of establishing bacterial populations that degrade phenoxyacetic acid by conjugal transfer of tfdA, the gene encoding 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase, to phenol-degrading strains of Pseudomonas and Ralstonia was examined. The mobilizable plasmid pKJS32 served as a vector for delivery of tfdA and the regulatory gene, tfdS. Transconjugant strains that degraded phenol by an ortho cleavage of catechol grew well on phenoxyacetic acid while those employing a meta cleavage could only grow on phenoxyacetic acid in the presence of benzoic acid or after a prolonged lag period and the appearance of mutants that had gained catechol 1,2-dioxygenase activities. Thus, an ortho cleavage of catechol was essential for degradation of phenoxyacetic acid, suggesting that a product of the ortho-cleavage pathway, probably cis,cis-muconic acid, is an inducer of tfdA gene expression. Establishment of phenoxyacetic-acid-degrading soil populations by conjugal transfer of tfdA would depend on the presence of phenol-degrading recipients employ- ing an ortho cleavage of catechol. Received: 7 August 1998 / Received revision: 29 October 1998 / Accepted 30 October 1998  相似文献   

10.
Benzene was metabolized by Rhodococcus sp. 33 through the intradiol cleavage (ortho-) pathway producing cis-benzene glycol, catechol and cis, cis-muconic acid as the intermediates. This is the first elucidation of the pathway by which benzene is degraded by a gram-positive organism. The enzyme assays have also suggested that Rhodococcus 33 does not have a fully functional tricarboxylic acid cycle but may have an operational glyoxylate bypass.  相似文献   

11.
Sinorhizobium sp. C4 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, HI, USA. This isolate can utilize phenanthrene as a sole carbon source. Sixteen metabolites of phenanthrene were isolated and identified, and the metabolic map was proposed. Degradation of phenanthrene was initiated by dioxygenation on 1,2- and 3,4-C, where the 3,4-dioxygenation was dominant. Subsequent accumulation of 5,6- and 7,8-benzocoumarins confirmed dioxygenation on multiple positions and extradiol cleavage of corresponding diols. The products were further transformed to 1-hydroxy-2-naphthoic acid and 2-hydroxy-1-naphthoic acid then to naphthalene-1,2-diol. In addition to the typical degradation pathways, intradiol cleavage of phenanthrene-3,4-diol was proposed based on the observation of naphthalene-1,2-dicarboxylic acid. Degradation of naphthalene-1,2-diol proceeded through intradiol cleavage to produce trans-2-carboxycinnamic acid. Phthalic acid, 4,5-dihydroxyphthalic acid, and protocatechuic acid were identified as probable metabolites of trans-2-carboxycinnamic acid, but no trace salicylic acid or its metabolites were found. This is the first detailed study of PAH metabolism by a Sinorhizobium species. The results give a new insight into microbial degradation of PAHs.  相似文献   

12.
Phthalate isomers and their esters are used heavily in various industries. Excess use and leaching from the product pose them as major pollutants. These chemicals are toxic, teratogenic, mutagenic and carcinogenic in nature. Various aspects like toxicity, diversity in the aerobic bacterial degradation, enzymes and genetic organization of the metabolic pathways from various bacterial strains are reviewed here. Degradation of these esters proceeds by the action of esterases to form phthalate isomers, which are converted to dihydroxylated intermediates by specific and inducible phthalate isomer dioxygenases. Metabolic pathways of phthalate isomers converge at 3,4-dihydroxybenzoic acid, which undergoes either ortho- or meta- ring cleavage and subsequently metabolized to the central carbon pathway intermediates. The genes involved in the degradation are arranged in operons present either on plasmid or chromosome or both, and induced by specific phthalate isomer. Understanding metabolic pathways, diversity and their genetic regulation may help in constructing bacterial strains through genetic engineering approach for effective bioremediation and environmental clean up.  相似文献   

13.
trans-Stilbene degradation was examined by the reaction using resting cells of microorganisms isolated through the enrichment culture using trans-stilbene. The strain SL3, showing the highest trans-stilbene-degrading activity, was identified as Arthrobacter sp. One of the reaction products was identified to be cis,cis-muconic acid. Arthrobacter sp. SL3 cells also transformed benzaldehyde, benzoic acid and catechol into cis,cis-muconic acid, suggesting that one benzene ring of trans-stilbene was converted into cis,cis-muconic acid via benzaldehyde formed by its Cα=Cβ bond cleavage.  相似文献   

14.
Cells of the gram-negative bacterium Ralstonia sp. strain SBUG 290 grown in the presence of biphenyl are able to cooxidize dibenzofuran which has been 1,2-hydroxylated. Meta cleavage of the 1,2-dihydroxydibenzofuran between carbon atoms 1 and 9b produced 2-hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid, which was degraded completely via salicylic acid. The presence of these intermediates indicates a degradation mechanism for dibenzofuran via lateral dioxygenation by Ralstonia sp. strain SBUG 290.  相似文献   

15.
4-Chroropyrocatechol is formed as a results of the oxidation of 2,5-dichlorobenzoate byPseudomonas stutzeri. 3-Chloro-cis,cis-muconic acid is the product of the oxidation of 4-chloropyrocatechol. Pyrocatechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, but not pyrocatechol 2,3-dioxygenase or protocatechuate 3,4-dioxygenase activities were found in cell-free extracts. Theortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catablic pathway for the degradation of 2,5-dichlorobenzoate by a newly isolated strain ofP. stutzeri was proposed.  相似文献   

16.
Iodosulfonamidation of peracetylated glycals was investigated using either a combination of N-iodosuccinimide/iodine or iodine chloride as a source of iodonium ion. 1,2-trans- and 1,2-cis-2-deoxy-2-iodo-1-sulfonamido hexoses were, respectively, obtained depending on the reagent system used. Both series of isomers were successfully converted to 1,2-di-nitrogenated compounds, for example, 1-azido-1,2-dideoxy-2-sulfonamido sugars, which are useful intermediates for the synthesis of N-linked glycoproteins or glycoconjugates.  相似文献   

17.
The molecular conformations of the linear oligopeptides H-(L -Ala)n-L -Pro-OH, with n = 1,2 and 3, have been investigated. 13C nmr observation of the equilibrium between the cis and trans forms of the Ala-Pro peptide bond indicated the occurrence of nonrandom conformations in solutions of these flexible peptides. The formation of the nonrandom species containing the cis form of the Ala-Pro bond was found to depend on the deprotonation of the carboxylic acid group of proline, the solvent, and the ionic strength in aqueous solution. The influence of intramolecular hydrogen bonding on the relative conformational energies of the species containing the cis and trans Ala-Pro peptide bond was studied by comparison of the peptides H-(Ala)n-Pro-OH with analogous molecules where hydrogen bond formation was excluded by the covalent structure. In earlier work a hydrogen bond between the protonated terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue had been suggested to stabilize conformations including trans proline. For the systems described here this hypothesis can be ruled out, since the cis:trans ratio is identical for molecules with methyl ester protected and free protonated terminal carboxylic acid groups of proline. Direct evidence for hydrogen bond formation between the deprotonated terminal carboxylic acid group and the amide proton of the penultimate amino acid residue in the molecular species containing cis proline was obtained from 1H nmr studies. However, the cis:trans ratio of the Ala-Pro bond was not affected by N-methylation of the penultimate amino acid residue, which prevents formation of this hydrogen bond. Overall the experimental observations lead to the conclusion that the relative energies of the peptide conformations including cis or trans proline are mainly determined by intramolecular electrostatic interactions, whereas in the molecules considered, intramolecular hydrogen bonding is a consequence of specific peptide backbone conformations rather than a cause for the occurrence of energetically favored species. Independent support for this conclusion was obtained from model consideration which indicated that electrostatic interactions between the terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue could indeed account for the observed relative conformational energies of the species containing cis and trans proline, respectively.  相似文献   

18.
Pseudomonas paucimobilis Q1 originally isolated as biphenyl degrading organism (Furukawa et al. 1983), was shown to grow with naphthalene. After growth with biphenyl or naphthalene the strain synthesized the same enzyme for the ring cleavage of 2,3-dihydroxybiphenyl or 1,2-dihydroxynaphthalene. The enzyme, although characterized as 2,3-dihydroxybiphenyl dioxygenase (Taira et al. 1988), exhibited considerably higher relative activity with 1,2-dihydroxynaphthalene. These results demonstrate that this enzyme can function both in the naphthalene and biphenyl degradative pathway.Abbreviations DHBP dihydroxybiphenyl - DHBPDO 2,3-dihydroxybiphenyl dioxygenase - DHDHNDH 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase - DHN 1,2-dihydroxynaphthalene - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBP cis-2-hydroxybenzalpyruvate - HOPDA 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate - PCB polychlorinated biphenyl - 2NS naphthalene-2-sulfonic acid  相似文献   

19.
Two rapidly growing propionibacteria that could reductively dechlorinate tetrachloroethylene (PCE) and cis-1,2-dichloroethylene (cis-DCE) to ethylene were isolated from environmental sediments. Metabolic characterization and partial sequence analysis of their 16S rRNA genes showed that the new isolates, designated as strains Propionibacterium sp. HK-1 and Propionibacterium sp. HK-3, did not match any known PCE- or cis-DCE-degrading bacteria. Both strains dechlorinated relatively high concentrations of PCE (0.3 mM) and cis-DCE (0.52 mM) under anaerobic conditions without accumulating toxic intermediates during incubation. Cell-free extracts of both strains catalyzed PCE and cis-DCE dechlorination; degradation was accelerated by the addition of various electron donors. PCE dehalogenase from strain HK-1 was mediated by a corrinoid protein, since the dehalogenase was inactivated by propyl iodide only after reduction by titanium citrate. The amounts of chloride ions (0.094 and 0.103 mM) released after PCE (0.026 mM) and cis-DCE (0.05 mM) dehalogenation using the cell-free enzyme extracts of both strains, HK-1 and HK-3, were stoichiometrically similar (91 and 100%), indicating that PCE and cis-DCE were fully dechlorinated. Radiotracer studies with [1,2-14C] PCE and [1,2-14C] cis-DCE indicated that ethylene was the terminal product; partial conversion to ethylene was observed. Various chlorinated aliphatic compounds (PCE, trichloroethylene, cis-DCE, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, and vinyl chloride) were degraded by cell-free extracts of strain HK-1.  相似文献   

20.
The bacterial strain FLB300 was enriched with 3-fluorobenzoate as sole carbon source. Besides benzoate all isomeric monofluorobenzoates were utilized. Regioselective 1,2-dioxygenation rather than 1,6-dioxygenation yielded 4-fluorocatechol and minimized the production of toxic 3-fluorocatechol. Degradation of 4-fluorocatechol was mediated by reactions of ortho cleavage pathway activities. Chemotaxonomic and r-RNA data excluded strain FLB300 from a phylogenetically defined genus Pseudomonas and suggested its allocation to the alpha-2 subclass of Proteobacteria in a new genus of the Agrobacterium-Rhizobium branch.Abbreviations PYES peptone yeast extract soy medium - TLC thin layer chromatography - NTA nitrilotriacetate - SDS-PAGE sodium dodecylsulphate-polyacrylsulphate gel electrophoresis - FB fluorobenzoate - DHB 1,2-dihydro-1,2-dihydroxybenzoate - NB nutrient broth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号