首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
This study demonstrated that exchange proteins directly activated by cAMP (Epac) and protein kinase A (PKA) by 8-bromo (8-Br)-adenosine 3',5'-cyclic monophosphate (cAMP) stimulated [(14)C]-α-methyl-D-glucopyranoside (α-MG) uptake through increased sodium-glucose cotransporters (SGLTs) expression and translocation to lipid rafts in renal proximal tubule cells (PTCs). In PTCs, SGLTs were colocalized with lipid raft caveolin-1 (cav-1), disrupted by methyl-β-cyclodextrin (MβCD). Selective activators of Epac or PKA, 8-Br-cAMP, and forskolin stimulated expressions of SGLTs and α-MG uptake in PTCs. In addition, 8-Br-cAMP-induced PKA and Epac activation increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which were involved in expressions of SGLTs. Furthermore, 8-Br-cAMP stimulated SGLTs translocation to lipid rafts via filamentous actin (F-actin) organization, which was blocked by cytochalasin D. In addition, cav-1 and SGLTs stimulated by 8-Br-cAMP were detected in lipid rafts, which were blocked by cytochalasin D. Furthermore, 8-Br-cAMP-induced SGLTs translocation and α-MG uptake were attenuated by inhibition of cav-1 activation with cav-1 small interfering RNA (siRNA) and inhibition of F-actin organization with TRIO and F-actin binding protein (TRIOBP). In conclusion, 8-Br-cAMP stimulated α-MG uptake via Epac and PKA-dependent SGLTs expression and trafficking through cav-1 and F-actin in PTCs.  相似文献   

2.
The cross talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and RhoA-mediated signal transductions and the effect of this cross talk on biologic features of human prostate and gastric cancer cells were investigated. In the human gastric cancer cell line, SGC-7901, lysophosphatidic acid (LPA) increased RhoA activity in a dose-dependent manner. The cellular permeable cAMP analog, 8-chlorophenylthio-cAMP (CPT-cAMP), inhibited the LPA-induced RhoA activation and caused phosphorylation of RhoA at serine(188). Immunofluorescence microscopy, Western blotting, and green fluorescent protein (GFP)-tagged RhoA location assay in live cells revealed that RhoA was distributed in both the cytoplasm and nucleus of SGC-7901 cells. Treatment with LPA and/or CPT-cAMP did not induce obvious translocation of RhoA in the cells. The LPA treatment caused formation of F-actin in SGC-7901 cells, and CPT-cAMP inhibited the formation. In a modified Boyden chamber assay, LPA stimulated the migration of SGC-7901 cells, and CPT-cAMP dose-dependently inhibited the stimulating effect of LPA. In soft agar assay, LPA stimulated early proliferation of SGC-7901 cells, and CPT-cAMP significantly inhibited the growth of LPA-stimulated cells. In the prostate cancer cell line, PC-3, LPA caused morphologic changes from polygonal to round, and transfection with plasmid DNA encoding constitutively active RhoA(63L) caused a similar change. Treatment with CPT-cAMP inhibited the changes in both cases. However, in PC-3 cells transfected with a plasmid encoding mutant RhoA188A, LPA induced rounding, but CPT-cAMP could not prevent the change. Results of this experiment indicated that cAMP/PKA inhibited RhoA activation, and serine188 phosphorylation on RhoA was necessary for PKA to exert its inhibitory effect on RhoA activation. The cross talk between cAMP/PKA and RhoA-mediated signal transductions had significant affect on biologic features of gastric and prostate cancer cells, such as morphologic and cytoskeletal change, migration, and anchorage-independent growth. The results may be helpful in implementing novel therapeutic strategies for invasive and metastatic prostate and gastric cancers.  相似文献   

3.
Parathyroid hormone-related protein (PTHrP)-(1–34) and PTHrP-(140–173) protect lung cancer cells from apoptosis after ultraviolet (UV) irradiation. This study evaluated upstream signaling in PTHrP-mediated alteration of lung cancer cell sensitivity to apoptosis. The two peptides increased cAMP levels in BEN lung cancer cells by 15–35% in a dose-dependent fashion, suggesting signaling through protein kinase A (PKA). In line with this view, the PKA inhibitor H89 abrogated the protective effects of PTHrP-(1–34) and PTHrP-(140–173) against caspase activation and DNA loss. PKA activation by forskolin, 3-isobutyl-1-methylxanthine (IBMX), or 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate attenuated and H89 augmented apoptosis after UV exposure as indicated by caspase-3 activation, cell DNA loss, and morphological criteria. Studies with IBMX and varying doses of forskolin indicated that small increases in cAMP, on the order of those generated by IBMX alone and the PTHrP peptides, were sufficient to protect lung cancer cells from apoptosis. In summary, PTHrP-(1–34) and PTHrP-(140–173) stimulate PKA in lung carcinoma cells and protect cells against UV-induced caspase-3 activation and DNA fragmentation. PKA activation by other means also induces resistance to apoptosis, and the protective effect of the PTHrP peptide is blocked by PKA inhibition. Thus PKA appears to have a role in the regulatory effects of PTHrP on lung cancer cell survival. caspases; cell surface receptors; growth substances; signal transduction  相似文献   

4.
5.
Studies have suggested that cAMP signaling pathways may be associated with the production of reactive oxygen species. In this study, we examined how modifications in cAMP signaling affected the production of hydroxyl radicals in rat striatum using microdialysis to measure extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA), which is a hydroxyl radical adduct of salicylate. Up to 50 nmol of the cell-permeative cAMP mimetic 8-bromo-cAMP (8-Br-cAMP) increased 2,3-DHBA in a dose-dependent manner (there was no additional increase in 2,3-DHBA at 100 nmol). Another cAMP mimetic, dibutyryl cAMP (db-cAMP), caused a nonsignificant increase in 2,3-DHBA at 50 nmol and a significant decrease at 100 nmol. Up to 20 nmol of forskolin, which is a direct activator of adenylyl cyclase, increased 2,3-DHBA, similar to the effect of 8-Br-cAMP; however, forskolin resulted in a much greater increase in 2,3-DHBA. A potent inhibitor of protein kinase A (PKA), H89 (500 μM), potentiated the 8-Br-cAMP- and forskolin-induced increases in 2,3-DHBA and antagonized the inhibitory effect of 100 nmol of db-cAMP. Interestingly, the administration of 100 nmol of 8-bromo-cGMP alone or in combination with H89 had no significant effect on 2,3-DHBA levels. Doses of 100 nmol of a preferential PKA activator (6-phenyl-cAMP) or a preferential PKA inhibitor (8-bromoadenosine-3',5'-cyclic monophosphorothionate, Rp-isomer; Rp-8-Br-cAMPS), which also inhibits the cAMP-mediated activation of Epac (the exchange protein directly activated by cAMP), suppressed or enhanced, respectively, the formation of 2,3-DHBA. Up to 100 nmol of 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP, which is a selective activator of Epac, dose-dependently stimulated the formation of 2,3-DHBA. These findings suggest that cAMP signaling plays contradictory roles (stimulation and inhibition) in the production of hydroxyl radicals in rat striatum by differential actions of Epac and PKA. These roles might contribute to the production of hydroxyl radicals concomitant with cAMP in carbon monoxide poisoning, because the formation of 2,3-DHBA was potentiated by the PKA inhibitor H89 and suppressed by Rp-8-Br-cAMPS, which inhibits PKA and Epac.  相似文献   

6.
Previously, we reportedthat red blood cells (RBCs) of rabbits and humans release ATP inresponse to mechanical deformation and that this release of ATPrequires the activity of the cystic fibrosis transmembrane conductanceregulator (CFTR). It was reported that cAMP, acting through acAMP-dependent protein kinase, PKA, is an activator of CFTR. Here weinvestigate the hypothesis that cAMP stimulates ATP release from RBCs.Incubation of human and rabbit RBCs with the direct activator ofadenylyl cyclase, forskolin (10 or 100 µM), with IBMX (100 µM),resulted in ATP release and increases in intracellular cAMP. Inaddition, epinephrine (1 µM), a receptor-mediated activator ofadenylyl cyclase, stimulated ATP release from rabbit RBCs. Moreover,incubation of human and rabbit RBCs with an active cAMP analog[adenosine 3'5'-cyclic monophosphorothioate Sp-isomer (Sp-cAMP, 100 µM)] resulted in ATP release. In contrast, forskolin and Sp-cAMPwere without effect on dog RBCs, cells known not to release ATP inresponse to deformation. When rabbit RBCs were incubated with theinactive cAMP analog and inhibitor of PKA activity, adenosine3',5'-cyclic monophosphorothioate Rp-isomer (100 µM),deformation-induced ATP release was attenuated. These results areconsistent with the hypothesis that adenylyl cyclase and cAMP arecomponents of a signal-transduction pathway relating RBC deformation toATP release from human and rabbit RBCs.

  相似文献   

7.
8.
In this work, we studied the effect of intracellular 3',5'-cyclic adenosine monophosphate (cAMP) on Li+ transport in SH-SY5Y cells. The cells were stimulated with forskolin, an adenylate cyclase activator, or with the cAMP analogue, dibutyryl-cAMP. It was observed that under forskolin stimulation both the Li+ influx rate constant and the Li+ accumulation in these cells were increased. Dibutyryl-cAMP also increased Li+ uptake and identical results were obtained with cortical and hippocampal neurons. The inhibitor of the Na+/Ca2+ exchanger, KB-R7943, reduced the influx of Li+ under resting conditions, and completely inhibited the effect of forskolin on the accumulation of the cation. Intracellular Ca2+ chelation, or inhibition of N-type voltage-sensitive Ca2+ channels, or inhibition of cAMP-dependent protein kinase (PKA) also abolished the effect of forskolin on Li+ uptake. The involvement of Ca2+ on forskolin-induced Li+ uptake was confirmed by intracellular free Ca2+ measurements using fluorescence spectroscopy. Exposure of SH-SY5Y cells to 1 mm Li+ for 24 h increased basal cAMP levels, but preincubation with Li+, at the same concentration, decreased cAMP production in response to forskolin. To summarize, these results demonstrate that intracellular cAMP levels regulate the uptake of Li+ in a Ca(2+)-dependent manner, and indicate that Li+ plays an important role in the homeostasis of this second messenger in neuronal cells.  相似文献   

9.
小G蛋白RhoA是细胞内信号转导的重要成分,参与对细胞的多种功能活动的调控。溶血磷脂酸(lysophosphatidic acid,LPA)与多种细胞的G蛋白偶连受体结合而发挥作用,除刺激细胞增殖外,还通过活化RhoA,诱导细胞骨架改变。cAMP是经典的第二信使,其下游激酶PKA可抑制RhoA活性,因此,cAMP在许多细胞活动中对RhoA有拮抗作用。  相似文献   

10.
Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.  相似文献   

11.
小G蛋白RhoA是细胞内信号转导的重要成分,参与对细胞的多种功能活动的调控。溶血磷脂酸(lysophosphatidicacid,LPA)与多种细胞的G蛋白偶连受体结合而发挥作用,除刺激细胞增殖外,还通过活化RhoA,诱导细胞骨架改变。cAMP是经典的第二信使,其下游激酶PKA可抑制RhoA活性,因此,cAMP在许多细胞活动中对RhoA有拮抗作用。本实验采用人前列腺癌细胞株PC-3,以绿色荧光蛋白(GreenFluorescentProtein,GFP)分别和不同RhoA结构(野生型RhoA、RhoA63L和RhoA188A)的cDNA共同转染细胞,在显微镜下(200倍视野)观察记录未转染细胞和转染细胞在LPA和cAMP作用下的形态变化,研究RhoA和cAMP/PKA介导的信号转导在调控癌细胞形态改变中的作用。  相似文献   

12.
Adenosine 3',5'-cyclic monophosphate (cAMP) and transforming growth factor-beta are important regulators of many biological processes. In this study we investigated the effect and its potential mechanism of cAMP on transforming growth factor-beta1- and serum deprivation-induced apoptosis in Mv1Lu cells. Transforming growth factor-beta1 treatment or serum deprivation induces apoptotic response in Mv1Lu cells. Forskolin, a cAMP-elevating agent, or 8-Bromo-cAMP (8-B-cAMP), a cell permeable cAMP analogue, inhibited the cell proliferation and markedly enhanced apoptosis induced by transforming growth factor-beta1, but completely suppressed serum deprivation-induced apoptosis. Furthermore, forskolin decreased the Akt phosphorylation, and the inhibition of phosphatidylinositol-3 kinase by LY294002 sensitized Mv1Lu cells to transforming growth factor-beta1-induced apoptosis. In addition, forskolin treatment induced tyrosine phosphorylation of epidermal growth factor receptor. Inhibition of epidermal growth factor receptor by specific inhibitor PD153035 blocked the cAMP-mediated suppression of serum deprivation-induced apoptosis. The results indicate that cAMP exerts its opposite effects in transforming growth factor-beta1- and serum deprivation-induced apoptosis via a mechanism involving the modulation of signaling components of phosphatidylinositol-3-kinase/Akt and epidermal growth factor receptor in Mv1Lu cells.  相似文献   

13.
One of the most important intracellular Ca2+ regulatory mechanisms in nonexcitable cells, "capacitative Ca2+ entry" (CCE), has not been adequately studied in astrocytes. We therefore investigated whether CCE exists in cultured rat cerebellar astrocytes and studied the roles of cyclic AMP (cAMP) and protein kinase C (PKC) in CCE. We found that (1) at least two different intracellular Ca2+ stores, the endoplasmic reticulum and mitochondria, are present in cerebellar astrocytes; (2) CCE does exist in these cells and can be inhibited by Ni2+, miconazole, and SKF 96365; (3) CCE can be directly enhanced by an increase in intracellular cAMP, as 8-bromoadenosine 3',5'-cyclic monophosphate (8-brcAMP), forskolin, and isobutylmethylxanthine have stimulatory effects on CCE; and (4) neither of the two potent protein kinase A (PKA) inhibitors, H8 and H89, nor a specific PKA agonist, Sp-adenosine 3',5'-cyclic monophosphothioate, had a significant effect on cAMP-enhanced Ca2+ entry. The [Ca2+]i increase was not due to a release from calcium stores, hyperpolarization of the membrane potential, inhibition of calcium extrusion, or a change in pHi, suggesting that cAMP itself probably acts as a novel messenger to modulate CCE. We also conclude that activation of PKC results in an increase in CCE. cAMP and PKC seem to modulate CCE by different pathways.  相似文献   

14.
Park KS  Lee HY  Lee SY  Kim MK  Kim SD  Kim JM  Yun J  Im DS  Bae YS 《FEBS letters》2007,581(23):4411-4416
We investigated whether lysophosphatidylethanolamine (LPE) modulates cellular signaling in different cell types. SK-OV3 ovarian cancer cells and OVCAR-3 ovarian cancer cells were responsive to LPE. LPE-stimulated intracellular calcium concentration ([Ca(2+)](i)) increase was inhibited by U-73122, suggesting that LPE stimulates calcium signaling via phospholipase C activation. Moreover, pertussis toxin (PTX) almost completely inhibited [Ca(2+)](i) increase by LPE, indicating the involvement of PTX-sensitive G-proteins. Furthermore, we found that LPE stimulated chemotactic migration and cellular invasion in SK-OV3 ovarian cancer cells. We examined the role of lysophosphatidic acid receptors on LPE-stimulated cellular responses using HepG2 cells transfected with different LPA receptors, and found that LPE failed to stimulate nuclear factor kappa B-driven luciferase. We suggest that LPE stimulates a membrane bound receptor, different from well known LPA receptors, resulting in chemotactic migration and cellular invasion in SK-OV3 ovarian cancer cells.  相似文献   

15.
The effect of intracellular cAMP and cystic fibrosis conductance regulator (CFTR) protein on the calcium-activated chloride current (ICaCl) present in parotid acinar cells was studied using the patch clamp technique. Application of 1 mM of 8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate (CPT-cAMP), a permeable analog of cAMP, inhibited ICaCl only at positive potentials. This inhibition was partially abolished in cells dialyzed with 20 nM PKI 6-22 amide, a potent peptide that specifically inhibits PKA. Because cAMP is an activator of the CFTR Cl- channel, a known regulator of ICaCl, we also investigated if the inhibition of ICaCl was mediated by activation of CFTR. To test this idea, we added 1 mM CPT-cAMP to acinar cells isolated from knockout animals that do not express the CFTR channel. In these cells the cAMP effect was totally abolished. Thus, our data provide evidence that cAMP regulates ICaCl by a dual mechanism involving PKA and CFTR.  相似文献   

16.
An adenosine 3',5'-cyclic monophosphate (cAMP)-dependent growing cell line called CT-Mat was established by the long-term cultivation of an interleukin-2 (IL-2)-dependent human T-cell line, ILT-Mat, in the presence of cholera toxin instead of IL-2. CT-Mat cells can grow in the medium containing either cholera toxin or forskolin or cAMP derivatives. Although the CT-Mat cell line can still grow dependent on IL-2, the forskolin-induced growth of CT-Mat cells was demonstrated not to be mediated by an autocrine mechanism of IL-2 or any other growth factor. The intracellular cAMP level was elevated by treatment with the chemical agents but little by treatment with IL-2. These suggest that cAMP transduces intracellular growth signals different from those through the IL-2 receptor in an IL-2-dependent T-cell line CT-Mat.  相似文献   

17.
18.
19.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

20.
Proliferation of endothelial cells is regulated by angiogenic and antiangiogenic factors whose actions are mediated by complex interactions of multiple signaling pathways. Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) stimulate cell proliferation and activate the mitogen-activated protein kinase (MAPK) cascade in bovine brain capillary endothelial (BBE) cells. We have extended these findings to show that both mitogens activate MAPK via stimulation of Raf-1. Activation of Raf/MAPK is inhibited by increasing intracellular cAMP levels pharmacologically or via stimulation of endogenously expressed β-adrenergic receptors. Both VEGF- and bFGF-induced Raf-1 activity are blocked in the presence of forskolin or 8-bromo-cAMP by 80%. The actions of increased cAMP appear to be mediated by cAMP-dependent protein kinase (PKA), since treatment with H-89, a the specific inhibitor of PKA, reversed the inhibitory effect of elevated cAMP levels on mitogen-induced cell proliferation and Raf/MAPK activation. Moreover, elevations in cAMP/PKA activity inhibit mitogen-induced cell proliferation. These findings demonstrate, in cultured endothelial cells, that the cAMP/PKA signaling pathway is potentially an important physiological inhibitor of mitogen activation of the MAPK cascade and cell proliferation. J. Cell. Biochem. 67:353–366, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号