首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic inputs of biologically available nitrogen (N) and climate change are simultaneously altering N and soil moisture availability in terrestrial ecosystems. Yet, plant responses to concurrent changes in both N and soil moisture in non-grassland ecosystems remain poorly understood. Our objective was to investigate how rooting depth and N-fixing ability—two functional traits we expected to mediate soil moisture and N limitations—influence forb responses to N and soil moisture availability in the Rocky Mountains USA. We assessed the growth and physiological responses (i.e., chlorophyll fluorescence, transpiration rate, and floral display) of four subalpine forb species to N additions across a naturally-occurring soil moisture gradient during one growing season. Soil moisture had a stronger positive effect on growth in shallow-rooted species and N additions had a stronger positive effect on photosynthetic capacity in species without N-fixing abilities. Transpiration rates were not consistent with soil moisture limitations expected for shallow-rooted species, and soil moisture and N had a neutral or negative influence on maximum floral displays across species. Nitrogen and soil moisture appeared to each limit separate response variables in some cases and we did not observe any N?×?soil moisture interactions. These findings suggest that shallow-rooted species may be more vulnerable to increased drought severity and that increased N availability may disproportionately benefit species without N-fixing abilities. However, mixed support for our hypotheses suggests that environmental conditions and functional traits not evaluated here likely influence subalpine plant responses to soil moisture and N availability.  相似文献   

2.
Diurnal and seasonal fluctuations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum were monitored throughout two consecutive years at Garraf Natural Park in north-east Spain. Leaf gas exchange rates, chlorophyll fluorescence and shoot water potentials were measured once each season. Leaf nitrogen and carbon concentrations, leaf delta13C and delta15N and specific leaf area (SLA) were also measured once a year (August) on well developed mature leaves. Globularia alypum experienced seasonal fluctuations in their water potential, with the lowest values recorded in summer, whereas E. multiflora did not show significant differences in water potential among seasons. Moreover, lower water potentials were found in G. alypum than in E. multiflora throughout the entire study, suggesting that the latter behaved as a drought-avoiding species, whereas the former tolerated lower water potentials. In both species, maximum leaf gas exchange rates were observed in autumn and secondarily in spring; in contrast, photosynthetic and transpiration rates reached absolute minima in summer. The stronger fluctuations in water potential and leaf gas exchange rates found in G. alypum compared to E. multiflora, suggest that G. alypum is, sensu Levitt (1980), a water spender, whereas E. multiflora is a water conservative. This hypothesis is further supported by a higher integrated water-use efficiency (higher delta13C values) and a higher degree of sclerophylly (lower SLA) in E. multiflora in comparison with G. alypum. Globularia alypum showed higher leaf gas exchange rates and higher predawn potential photochemical efficiency (Fv/Fm) than E. multiflora during most of the study. In spring and autumn, predawn Fv/Fm values were within the optimal range, whereas chronic photoinhibition in summer and winter was detected in both species. However, whereas both species could maintain positive photosynthetic rates in winter, frequent negative values were found in summer, suggesting higher levels of stress during the drought period. These results together with the high correlations that were found between the net photosynthetic rates and several parameters of water availability (accumulated rainfall, soil moisture or midday water potential) provided further evidence of the key role of water availability in the regulation of the photosynthetic rates in these Mediterranean species. Warmer and drier conditions in future decades, as a consequence of climate change, may alter the present, slight competitive advantage of G. alypum and the fitness of both shrub species within semi-arid Mediterranean environments.  相似文献   

3.
Wild tomatoes occur in habitats from the extremely dry Atacama Desert to moist areas in the Andean highlands, which may have resulted in adaptation of populations or species to differences in soil moisture availability. However, when two accessions representing extremes in habitat water availability from each of the five self-compatible species were grown in a common garden, we observed no differences in leaf physiological responses to soil drought within or between species. All five species had drought avoidance characteristics with the same threshold soil moisture availability for decline of assimilation, stomatal conductance, and leaf water potential (Ψ(l)) in response to slowly decreasing soil moisture. After rewatering, all species rapidly recovered to near predrought Ψ(l), but bulk leaf solute potential after recovery did not indicate any osmotic adjustment. The lack of variation in shoot physiological traits during soil drought is unexpected as water deficit is commonly thought to have imposed selective pressure in the evolution of plant physiology. However, species did differ in assimilation under nonstressed conditions, which may contribute to differential soil water conservation and growth or survival during drought.  相似文献   

4.
半干旱沙地封育草场的植被变化及其与土壤因子间的关系   总被引:14,自引:3,他引:14  
杨晓晖  张克斌  侯瑞萍  慈龙骏 《生态学报》2005,25(12):3212-3219
封育措施是一种主要的草场恢复和重建的措施。通过对半干旱沙地完全封育、季节封育和未封育地的比较分析,量化了不同封育措施下植被变化及其与土壤因子的关系。对3种封育措施群落组成和生物多样性的多响应置换过程(M RPP)分析结果表明,封育改变了群落的组成成分并增加了生物多样性,群落的指示种分析及样方相似性指数计算结果则显示,完全封育(>10a)的群落逐渐向旱生化发展,各植物种分布的空间异质性显著提高,放牧价值开始降低,而季节性封育则明显处于一种非平衡的稳定状态。对不同措施下植物种与土壤因子间关系除趋势对应分析(DCA)和除趋势典范对应分析(DCCA)排序结果表明,土壤水分状况是限制3种措施中植物种组成的决定性因子,生物结皮盖度、土壤有机质和土壤容重等因子均在一定的程度上对水分产生影响,其中最为突出的因子是生物结皮盖度,由于长期缺少牲畜的践踏,完全封育区内结皮发育较好,这也是导致群落向旱生化发展的原因之一,同时一些重要因子诸如降水的时空变化或由此而引发的土壤水分的时空变化在本研究中可能被忽略。相关分析表明3种措施的生物多样性除了受土壤水分状况(土壤含水量和结皮盖度)的影响外,还与土壤速效氮呈正相关,与速效磷呈负相关。  相似文献   

5.
To resist establishment by an invasive plant, a community may require one or more species functionally similar to the invader in their resource acquisition pattern. In this study, communities consisting of native winter annual forbs, non‐native annual grasses, native perennials, or a combination of the two native communities were established with and without Centaurea solstitialis to determine the effect of soil moisture and light availability on plant community invasion resistance. The annual plant communities were unable to resist invasion by C. solstitialis. In the native winter annual forb community, senescence in late spring increased light penetration (>75%) to the soil surface, allowing seeded C. solstitialis to quickly establish and dominate the plots. In addition, native annual forbs utilized only shallow soil moisture, whereas C. solstitialis used shallow and deep soil moisture. In communities containing native perennials, only Elymus glaucus established well and eventually dominated the plots. During the first 2 years of establishment, water use pattern of perennial communities was similar to native annual forbs and resistance to invasion was associated with reduced light availability during the critical stages of C. solstitialis establishment. In later years, however, water use pattern of perennial grass communities was similar or greater than C. solstitialis‐dominated plots. These results show that Central Valley grasslands that include E. glaucus resist C. solstitialis invasion by a combination of light suppression and soil water competition. Spatiotemporal resource utilization patterns, and not just functional similarity, should be considered when developing restoration strategies to resist invasion by many non‐native species.  相似文献   

6.
Exclusion has been applied as a main measure for re-vegetation all over the world.This paper,by comparing the results of year-round exclusion,seasonal exclusion,and non-exclusion,quantified the vegetation variations under three different exclusion measures and their correlation to soil factors.The analysis results for community species component and plant diversity using multi-response permutation procedures (MRPPs)showed that exclusion did change the species component and increase plant diversity remarkably,while the period of exclusion had no significant influence on these two community features.The indicator species analysis and calculation of similarity indices indicated that community for year-round exclusion were becoming xerophytization and unpalatability,and showed highly spatial heterogeneity of plant species distribution,whereas community for seasonal exclusion was under stable non-equilibrium condition.Detrended correspondence analysis (DCA)and detrend canonical correspondence analysis (DCCA)results of relationship between plant species and soil variables demonstrated that soil moisture was a controlling factor for plant species component,microbiotic soil crust cover,soil organic matter,and soil bulk density had significant effects on soil moisture,among which microbiotic soil crust was a leading factor owing to its limitation to rainfall infiltration on the one hand,and its constraints to entrance of herbaceous seeds into soil or to germination of soil seeds on the other hand.As a result of long-term removal of animal grazing,crust kept intact in year-round exclusion community,which was a main reason of community xerophytization.It was also obvious from ordination results that some important environmental factors,such as tempo-spatial change of rainfall and corresponding tempo-spatial change of soil moisture,were neglected during direct gradient analysis.In addition,biodiversity was close related to soil nutrients as well as to soil moisture condition (soil water content and crust cover),and it had positive relation to available N,and negative relation to available P.Higher soil N had advantage to non-leguminous plants growth on nutrition-poor sand land definitely.The impact of P to community component was unclear and should be studied from plant physiology.Further researches on nonequilibrium theory in semi-arid rangeland will provide a scientific and flexible animal development paradigm for being implementing livestock fen-raising and grazing-forbidden policies in China.  相似文献   

7.
Water movement in the soil-plant-atmosphere continuum (SPAC) has a significant effect on the biogeochemical process in wetlands. This study investigated the water movement in the SPAC in Poyang Lake wetland, which is a protected area with an important ecological function within the Yangtze River basin, under different water-level conditions by analyzing the responses of river, groundwater, soil and plants to precipitation using stable hydrogen and oxygen isotopes. The results show that the stable hydrogen and oxygen isotopic compositions (δ18O and δD) of soil water decrease with increasing depth due to the near surface evaporation. During the dry season the water-level in Poyang Lake is low, when it rains the influencing depth of precipitation and evaporation on soil water isotopic signatures was 20 cm below the ground surface. The rain water infiltrates into the soil, recharges groundwater and flows to the river. When the water-level in Poyang Lake is low, the Xiu River is recharged by the groundwater, which recharges the soil water by capillary rise. During the flood season, the water-level is high and the water in Poyang Lake reaches or covers the meadows, recharges the groundwater and soil water. In the meantime, the water in Poyang Lake can be recharged by rain water when it rains. During the dry season when it doesn’t rain, plants mainly use groundwater, but soil water is preferred and plants don’t use rainwater directly when it rains. When the lake water-level is extremely low, the plants in Poyang Lake wetland may suffer from water stress, which is harmful for plant growth.  相似文献   

8.
毛乌素沙地南缘沙漠化临界区域土壤水分和植被空间格局   总被引:4,自引:0,他引:4  
应用地统计学和经典统计学方法,对毛乌素沙地南缘沙漠化临界区域土壤水分和植被特征的空间分布格局及其相互关系进行研究,结果表明: 0-5 cm和5-10 cm土壤水分符合指数模型,10-15 cm土壤水分和植物群落物种数、植被盖度、植被密度都符合球状模型;0-5 cm土壤水分、植物群落物种数和植被盖度都具有强空间自相关性,5-10 cm、10-15 cm土壤水分和植被密度都具有中等程度的空间自相关性;从牛枝子群落到黑沙蒿群落,各层土壤水分与植物群落物种数之间具有相似的空间格局,都呈先升高后降低的变化趋势,而植被盖度和植被密度呈逐渐减小的变化趋势;0-5 cm土壤水分与植物群落物种数之间具有显著的正相关,是制约植被物种空间分布的关键因素。  相似文献   

9.
Community composition in semi-arid ecosystems has largely been explained by water availability; however, nitrogen is a common limiting nutrient, and may be an important control on plant function and carbon uptake. We investigated nitrogen relations and photosynthesis of several dominant species at shallow groundwater sites in Owens Valley, California. We measured soil nitrogen (N) availability, leaf N and isotopes, water isotopes, and gas exchange of dominant shrub species Atriplex torreyi and Ericameria nauseosa and grass species Distichlis spicata throughout the summer season in three sites that had similar watertable depths, but that varied in community composition and N availability. Surface soil inorganic N was greatest at the grassland site and declined from June to September at all sites. Leaf N declined throughout the season in all species, and was correlated with soil inorganic N. Photosynthesis of A. torreyi remained relatively constant throughout the season. In contrast, D. spicata and E. nauseosa experienced seasonal declines in photosynthesis at sites with greater inorganic N availability. Leaf N was significantly correlated with photosynthesis in D. spicata across all sites and measurement periods. Controls on N cycling are likely to be an important determinant of photosynthesis of D. spicata in this region.  相似文献   

10.
资源利用方式的分化可以减小物种间对相同资源的竞争,是群落物种多样性维持的主要机制。在全球变化背景下,土壤温度和水分条件的变化可能影响高寒草甸生态系统植物的氮素(N)营养。该实验在经N、水处理3年的高寒草甸开展,通过15NH415NO3的15N稳定性同位素注射,比较高寒草甸主要植物种对N、水处理的响应方式,以及N吸收能力、分配和根冠比特点,研究其营养吸收和资源分配方式的分化。结果发现不同植物种对N、水处理响应差异显著,N吸收能力、根N含量和根冠比等功能性状种间差异显著;回归分析发现植物种N吸收能力和根N含量之间的关系不显著,和根冠比之间呈显著线性负相关。说明高寒草甸生态系统不同植物种间N吸收具有生态位分化,并且存在N营养吸收能力和资源分配策略的权衡。  相似文献   

11.
Classical niche partitioning theory posits increased competition for and partitioning of the most limiting resource among coexisting species. Coexisting plant species may vary in rooting depth, reflecting niche partitioning in water source use. Our goal was to assess the soil water partitioning of woody plant communities across northern Arizona along an elevational moisture gradient using stem and soil water isotopes from two sampling periods to estimate the use of different water sources. We hypothesized that niche overlap of water sources would be higher and monsoon precipitation uptake would be lower at sites with higher moisture availability. Pairwise niche overlap of coexisting species was calculated using mixing model estimates of proportional water use for three sources. Across the moisture gradient, niche overlap increased with site moisture index (precipitation/potential evapotranspiration) across seasons, and site moisture index explained 37% of the variation in niche overlap of intermediate and deeper sources of water. Desert trees utilized more winter source water than desert shrubs, suggesting the partitioning of water sources between functional groups. However, seasonal differences in surface water use were primarily found at intermediate levels of site moisture availability. Our findings support classical niche partitioning theory in that plants exhibit higher overlap of water sources when water is not a limiting resource.  相似文献   

12.
Exclusion has been applied as a main measure for re-vegetation all over the world. This paper, by comparing the results of year-round exclusion, seasonal exclusion, and non-exclusion, quantified the vegetation variations under three different exclusion measures and their correlation to soil factors. The analysis results for community species component and plant diversity using multi-response permutation procedures (MRPPs) showed that exclusion did change the species component and increase plant diversity remarkably, while the period of exclusion had no significant influence on these two community features. The indicator species analysis and calculation of similarity indices indicated that community for year-round exclusion were becoming xerophytization and unpalatability, and showed highly spatial heterogeneity of plant species distribution, whereas community for seasonal exclusion was under stable non-equilibrium condition. Detrended correspondence analysis (DCA) and detrend canonical correspondence analysis (DCCA) results of relationship between plant species and soil variables demonstrated that soil moisture was a controlling factor for plant species component, microbiotic soil crust cover, soil organic matter, and soil bulk density had significant effects on soil moisture, among which microbiotic soil crust was a leading factor owing to its limitation to rainfall infiltration on the one hand, and its constraints to entrance of herbaceous seeds into soil or to germination of soil seeds on the other hand. As a result of long-term removal of animal grazing, crust kept intact in year-round exclusion community, which was a main reason of community xerophytization. It was also obvious from ordination results that some important environmental factors, such as tempo-spatial change of rainfall and corresponding tempo-spatial change of soil moisture, were neglected during direct gradient analysis. In addition, biodiversity was close related to soil nutrients as well as to soil moisture condition (soil water content and crust cover), and it had positive relation to available N, and negative relation to available P. Higher soil N had advantage to non-leguminous plants growth on nutrition-poor sand land definitely. The impact of P to community component was unclear and should be studied from plant physiology. Further researches on non-equilibrium theory in semi-arid rangeland will provide a scientific and flexible animal development paradigm for being implementing livestock fen-raising and grazing-forbidden policies in China. __________ Translated from Acta Ecologica Sinica, 2005, 25(12): 3212–3219 [译自: 生态学报]  相似文献   

13.
Prescribed fire has become a common tool of natural area managers for removal of non‐indigenous invasive species and maintenance of barrens plant communities. Certain non‐native species, such as tall fescue (Festuca arundinacea), tolerate fire and may require additional removal treatments. We studied changes in soil N and C dynamics after prescribed fire and herbicide application in remnant barrens in west central Kentucky. The effects of a single spring burn post‐emergence herbicide, combined fire and herbicide treatments, and an unburned no‐herbicide control were compared on five replicate blocks. In fire‐plus‐herbicide plots, fescue averaged 8% at the end of the growing season compared with 46% fescue cover in control plots. The extent of bare soil increased from near 0 in control to 11% in burned plots and 25% in fire‐plus‐herbicide plots. Over the course of the growing season, fire had little effect on soil N pools or processes. Fire caused a decline in soil CO2 flux in parallel to decreased soil moisture. When applied alone, herbicide increased plant‐available soil N slightly but had no effect on soil respiration, moisture, or temperature. Fire‐plus‐herbicide significantly increased plant‐available soil N and net N transformation rates; soil respiration declined by 33%. Removal of non‐native plants modified the chemical, physical, and biological soil conditions that control availability of plant nutrients and influence plant species performance and community composition.  相似文献   

14.
Cloud immersion can provide a potentially important moisture subsidy to plants in areas of frequent fog including the threatened spruce-fir communities of the southern Appalachian Mountains (USA). These mountaintop communities grow only above ~1,500 m elevation, harbor the endemic Abies fraseri, and have been proposed to exist because of frequent cloud immersion. While several studies have demonstrated the importance of cloud immersion to plant water balance, no study has evaluated the proportion of plant water derived from cloud moisture in this ecosystem. Using the isotopic mixing model, IsoSource, we analyzed the isotopic composition of hydrogen and oxygen for water extracted from ground water, deep soil, shallow soil, fog, and plant xylem at the upper and lower elevational limits both in May (beginning of the growing season) and October (end of the growing season). Cloud-immersion water contributed up to 31 % of plant water at the upper elevation sites in May. High-elevation plants of both species also experienced greater cloud immersion and had greater cloud water absorption (14–31 %) compared to low-elevation plants (4–17 %). Greater cloud water uptake occurred in May compared to October, despite similar rainfall and cloud-immersion frequencies. These results demonstrate the important water subsidy that cloud-immersion water can provide. With a warming climate leading potentially to increases in the ceiling of the cloud base and, thus, less frequent cloud immersion, persistence of these relic mountaintop forests may depend on the magnitude of these changes and the compensating capabilities of other water sources.  相似文献   

15.
Nitrogen (N) cycling was analyzed in the Kalahari region of southern Africa, where a strong precipitation gradient (from 978 to 230 mm mean annual precipitation) is the main variable affecting vegetation. The region is underlain by a homogeneous soil substrate, the Kalahari sands, and provides the opportunity to analyze climate effects on nutrient cycling. Soil and plant N pools, 15N natural abundance (δ15N), and soil NO emissions were measured to indicate patterns of N cycling along a precipitation gradient. The importance of biogenic N2 fixation associated with vascular plants was estimated with foliar δ15N and the basal area of leguminous plants. Soil and plant N was more 15N enriched in arid than in humid areas, and the relation was steeper in samples collected during wet than during dry years. This indicates a strong effect of annual precipitation variability on N cycling. Soil organic carbon and C/N decreased with aridity, and soil N was influenced by plant functional types. Biogenic N2 fixation associated with vascular plants was more important in humid areas. Nitrogen fixation associated with trees and shrubs was almost absent in arid areas, even though Mimosoideae species dominate. Soil NO emissions increased with temperature and moisture and were therefore estimated to be lower in drier areas. The isotopic pattern observed in the Kalahari (15N enrichment with aridity) agrees with the lower soil organic matter, soil C/N, and N2 fixation found in arid areas. However, the estimated NO emissions would cause an opposite pattern in δ15N, suggesting that other processes, such as internal recycling and ammonia volatilization, may also affect isotopic signatures. This study indicates that spatial, and mainly temporal, variability of precipitation play a key role on N cycling and isotopic signatures in the soil–plant system.  相似文献   

16.
The outcome of species interactions often depends on the environmental conditions under which they occur. In this study, we tested how different soil moisture conditions affected the outcome of the ectomycorrhizal symbiosis between three Rhizopogon species and Pinus muricata in a factorial growth chamber experiment. We found that when grown in 7% soil moisture conditions, ectomycorrhizal plants had similar biomass, photosynthesis, conductance, and total leaf nitrogen as non-mycorrhizal plants. However, when grown at 13% soil moisture, ectomycorrhizal plants had significantly greater shoot biomass, higher photosynthetic and conductance rates, and higher total leaf nitrogen than non-mycorrhizal plants. The differences in plant response by mycorrhizal status in the two soil moisture treatments corresponded with evidence of water limitation experienced by the fungi, which had much lower colonization at 7% compared to 13% soil moisture. Our results suggest that the outcome of the ectomycorrhizal symbiosis can be context-dependent and that fluctuating environmental conditions may strongly affect the way plants and fungi interact. Peter G. Kennedy and Kabir G. Peay contributed equally to this work and order was determined by a coin toss.  相似文献   

17.
Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C4 bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO2 response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.  相似文献   

18.
While plant litter is known to regulate soil moisture, little is known about the extent to which litter impacts moisture over and above the physical environment (i.e., ecosite) throughout the growing season, particularly in cool-temperate grasslands where moisture is considered less limiting for plant growth. In this study, we examined the relative impact of litter and ecosite on growing season soil moisture in a northern rough fescue (Festuca hallii) grassland. We also examined the relationship between litter and plant biomass throughout the growing season, including linkages between litter, plant growth, and the effects of litter on microclimate. During May, only ecosite was found to be associated with soil moisture, with a similar finding for plant biomass. Litter became important in maintaining greater soil moisture in June and July, however, likely through its corresponding negative impact on soil temperature and associated evaporation. In general, litter had a stronger and more consistent influence on soil moisture than ecosite. Finally, litter had a positive relationship with above-ground biomass, but only during June and July, the same months when litter exhibited the strongest relationship with soil moisture. Litter therefore appears to promote mid-season plant growth in these temperate grasslands, presumably through its ability to reduce evaporation and maintain greater soil water during seasonal moisture limitations.  相似文献   

19.
亚热带稻田弃耕湿地土壤因子对植物群落结构的影响   总被引:4,自引:0,他引:4  
采用冗余分析法对弃耕一年稻田湿地生态系统的植物群落与土壤因子进行了分析.结果表明:在亚热带湿地生态系统中,土壤水分条件、有效钾、有效磷和pH是影响物种分布的最主要土壤因子.试验区的主要植物物种可以划分为3个物种组:丁香蓼-水竹叶物种组(组1)、牛鞭草-圆叶节节菜-稻槎菜物种组(组2)和小白酒草-辣蓼-双穗雀稗物种组(组3).其中,组1主要分布于土壤有效钾含量较高的区域;组2主要分布于阶段性淹水区域;组3主要分布于排水区域,且与土壤有效磷和pH呈正相关.物种多样性与土壤pH、植被地上生物量与土壤全钾含量呈显著正相关,均匀度与土壤有效氮含量呈显著负相关,与其他指标的相关性均不显著.  相似文献   

20.
Thin, poorly developed soils in the high elevation, summer‐dry environment near Lake Tahoe, California are easily disturbed by anthropogenic impacts. Subsoils and parent materials that are exposed by vegetation removal and topsoil erosion or by burial during construction activities are difficult to revegetate and may continue to erode for decades after disturbance. The resulting sediment loads contribute to decreased water quality in local watersheds and to the loss of clarity in Lake Tahoe. Field observations suggest that soil disturbance often results in depletion of soil nitrogen (N) reserves and that the remaining substrates may be unable to provide adequate N for revegetation. To quantify the levels of soil N that are associated with higher levels of percent plant cover on previously disturbed soils in the Lake Tahoe area, a basin‐wide survey and a second paired site study were conducted. Results indicate that extractable ammonium and nitrate levels correlate poorly with percent vegetative cover, whereas the correlations of anaerobically mineralizable N and total N are stronger and account for nearly 50% of the variability in plant cover data. Sites with plant cover measuring greater than 40% are associated with total soil N levels of about 1,200 kg N/ha and anaerobic mineralizable N levels of about 26 kg N/ha. Despite high concentrations of N in the surface soils, a large fraction of the N in the 0‐ to 50‐cm profile occurs below 30 cm, when measured on a landscape basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号