首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在扫描电镜下首次观察了桦木科鹅耳枥属千金榆花序和花的形态发生过程。千金榆雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基和2个次级苞片;每个花原基分化出2个心皮原基,形成1个二心皮雌蕊;次级苞片远轴面发育快于近轴面,呈不均等的联合状;雌蕊基部有1层环状花被原基。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出3个花原基分区,并分化形成3朵小花,小花无花被,位于两侧的小花分别有2枚雄蕊,位于中央的小花有4枚雄蕊,雄蕊共8枚,稀为10枚,该3朵小花为二歧聚伞状排列,其花基数应为2基数。  相似文献   

2.
Myristica fragrans and M. malabarica are dioecious. Both staminate and pistillate plants produce axillary flowering structures. Each pistillate flower is solitary, borne terminally on a short, second-order shoot that bears a pair of ephemeral bracts. Each staminate inflorescence similarly produces a terminal flower and, usually, a third-order, racemose axis in the axil of each pair of bracts. Each flower on these indeterminate axes is in the axil of a bract. On the abaxial side immediately below the perianth, each flower has a bracteole, which is produced by the floral apex. Three tepal primordia are initiated on the margins of the floral apex in an acyclic pattern. Subsequent intercalary growth produces a perianth tube. Alternate with the tepals, three anther primordia arise on the margins of a broadened floral apex in an acyclic or helical pattern. Usually two more anther primordia arise adjacent to each of the first three primordia, producing a total of nine primordia. At this stage the floral apex begins to lose its meristematic appearance, but the residuum persists. Intercalary growth below the floral apex produces a columnar receptacle. The anther primordia remain adnate to the receptacle and grow longitudinally as the receptacle elongates. Each primordium develops into an anther with two pairs of septate, elongate microsporangia. In pistillate flowers, a carpel primordium encircles the floral apex eventually producing an ascidiate carpel with a cleft on the oblique apex and upper adaxial wall. The floral ontogeny supports the morphological interpretation of myristicaceous flowers as trimerous with either four-sporangiate anthers or monocarpellate pistils.  相似文献   

3.
Spinacia oleracea (Chenopodiaceae) is a potential model system for studies of mechanisms of sex expression and environmental influences on gender in dioecious species. Development of the male and female flowers and inflorescences of spinach were studied to determine when the two sex types can be distinguished. We found that female inflorescence apices are significantly larger than those of the male. Flower primordia are similar in size prior to perianth initiation, but the male primordia develop at a faster rate. Another distinguishing feature at this early stage is the larger bract subtending the female primordium. The two flower types become readily distinguishable when the perianth initiates. Male flowers produce four sepals and four stamens in a spiral pattern in close succession. Female flowers produce two alternate perianth parts that enlarge somewhat before the gynoecium becomes visible. There are no traces of gynoecia in male flowers or of stamens in female flowers. We propose that plant sex type is determined before inflorescence development, prior to or at evocation.  相似文献   

4.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

5.
《Aquatic Botany》1987,29(1):1-17
Thalassodendron pachyrhizum den Hartog is dioecious with inflorescences on short laterals from upright stems. The male inflorescence consists of two flowers which are morphologically identical but developmentally different. Each male flower has two laterally fused anthers, each of which contains four loculi surrounding a vascular bundle. Filiform pollen grains are arranged in coils. The walls of pollen grains contain cellulosic microfibrils embedded in a protein and carbohydrate matrix, and lack an exine layer. The female inflorescence produces two morphologically and developmentally identical flowers, each having an ovary with a short style containing two vascular bundles and leading to two long, slender stigmas. Both male and female inflorescences are enclosed in several alternating bracts. The innermost bract differs from the others by lacking a ligule. Squamulae intravaginales are present in all inflorescences. In each inflorescence, only one ovary develops into the seed which germinates on the parent plant. Young seedlings have an aril-like structure which disappears at a later stage of seedling development. The seedling produces, firstly, an aberrant seedling leaf and a scarious seedling sheath, then several true foliage leaves and finally several root primordia. The mature seedling separates from its protecting bract and detaches from the parent plant. The floral and seedling morphology and anatomy are compared with other closely related genera in the Cymodoceaceae and unique features are assessed. The frequency of floral and seedling production is discussed in relation to the distribution of T. pachyrhizum.  相似文献   

6.
榛属 (桦木科) 花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4~6个雄蕊原基,形成4~6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中,出现雄蕊原基纵裂,并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

7.
榛属(桦木科)花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4。6个雄蕊原基,形成4—6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中.出现雄蕊原基纵裂。并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

8.
In order to determine the extent of floral ontogenetic differences among species of a genus, six species of Gleditsia were studied. Gledilsia is one of only two leguminous genera known in which there is completely helical succession of floral organs. Floral ontogeny was compared in three species (Gleditsia amorphoides, G. aquatica, and G. triacanthos), and late stages in six species (including the first three plus G. caspica, G. delavayi, and G. japonica). Other unusual primitive developmental features include the unequal-sized flower primordia which produce flowers of variable merosity. Order of floral development is also loosely controlled, so that flowers of different growth stages are intermixed in the inflorescence. Variable features include the occurrence of floral bracts, merosity of flowers, number of organs, and position of the first organ (sepal) initiated. The inflorescence type, while usually a raceme, often has lateral branches near the base, or fascicles of flowers at some points. A terminal flower often is present, although not in all species. Sex of flowers and inflorescences also varies, although floral initiation tends to include both stamens and carpel primordia. Suppression of one or the other may occur at different stages of development. Carpel orientation also varies; the cleft may be tilted or inverted occasionally. It is proposed that absence of subtending floral bracts influences development so as to favor radial symmetry and establishment of other “chaotic” characters seen in Gledilsia flowers.  相似文献   

9.
SMITH  D. L. 《Annals of botany》1966,30(3):475-486
In Britain the transition from the vegetative to the floweringphase in species of Carex occurs in July or August. The younginflorescence becomes dormant in October or November and floweringoccurs the following spring. During the transition the apexenlarges both vertically and transversely, and bract primordiaare initiated low on the flanks of the meristem. Each bractprimordium subtends an axillary growth centre. Depending onthe species, the primordia which arise from the first-formedgrowth centres may develop into either lateral spikes or femaleflowers; chose formed later may develop into either male orfemale flowers. The three types of axillary structure: lateralspike, female flower, and male flower, arise from only two typesof primordia: a male flower primordium, which develops onlyas a male flower; and a ‘spikelet primordium’, whichcan develop either as a lateral spike or as a female flower,according to which of the two meristems present within it aborts.When the development of the inflorescence is interpreted interms of these two types of primordia the fundamental similaritybetween the different inflorescence types occurring in the genusbecomes evident.  相似文献   

10.
The development of staminate and pistillate flowers in the dioecious tree species Pistacia vera L. (Anacardiaceae) was studied by scanning electron microscopy with the objective of determining organogenetic patterns and phenology of floral differentiation. Flower primordia are initiated similarly in trees of both sexes. Stamen and carpel primordia are initiated in both male and female flowers, and the phenology of organ initiation is essentially identical for flowers of both sexes. Vestigial stamen primordia arise at the flanks of pistillate flower apices at the same time functional stamens are initiated in the staminate flowers. Similarly, a vestigial carpel is initiated in staminate flowers at the same time the primary, functional carpel is initiated in pistillate flower primordia. Differences between the two sexes become apparent early in development as, in both cases, development of organs of the opposite sex becomes arrested at the primordial stage. Male flowers produce between four and six mature functional stamens and female flowers produce a gynoecium with one functional and two sterile carpels.  相似文献   

11.
The floral organogenesis of Potamogeton distinctus A. Benn. was observed under the scanning electron microscope (SEM). The floral buds are first initiated on the lower portion of inflorescence in alternating whorls of three. Each of the floral buds is subtended by a bract primordium during the early stages. The primordia of the floral appendages arise on the floral bud acropetally. Two lateral tepals are first initiated and then two median ones soon after. Stamens are normally initiated as elongate primordia opposite the tepals, with the two lateral stamens preceding the median ones. The two carpel primordia arise alternating with the stamens. In some flowers, one of the two gynoecial primordia becomes inactive soon after they are initiated, or only one carpel primordium is initiated. The present observation of the gynoecial development supports the viewpoint that the evolution of flower in Potamogeton involves a reduction in number of parts. The existence of bract primordium during the early stages in many species of Potamogeton indicates that the absence of bractin mature flowers should be the result of reduction.  相似文献   

12.
The initiation and growth of axillary meristems are fundamental components of plant architecture. Here, we describe the mutant missing flowers (mf) of Helianthus annuus characterized by the lack of axillary shoots. Decapitation experiments and histological analysis indicate that this phenotype is the result of a defect in axillary meristem initiation. In addition to shoot branching, mutation affects floral differentiation. The indeterminate inflorescence of sunflower (capitulum) is formed of a large flat meristem which produces floret primordia in multiple spirals. In wildtype plants a bisecting crease divides each primordium in two distinct bumps that adopt different fate. The peripheral (abaxial) part of the primordium becomes a small leaf-like bract and the adaxial part becomes a flower. In the mf mutant, the formation of flowers at the axil of bracts is precluded. Histological analyses show that in floret primordia of the mutant a clear subdivision in dyads is not established. The primordia progressively bend inside and only large involucral floral bracts are developed. The results suggest that the MISSING FLOWERS gene is essential to provide or perceive an appropriate signal to the initiation of axillary meristems during both vegetative and reproductive phases.  相似文献   

13.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

14.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

15.
16.
Floral morphogenesis and the development of Cercidiphyllumjaponicum Sieb. et Zucc. were observed by scanning electron microscopy (SEM). The results showed that the pistillate inflorescences were congested spikes with the flowers arranged opposite. Great differences between the so-called "bract" and the vegetative leaf were observed both in morphogenesis and morphology. In morphogenesis, the "bract" primordium is crescent-shaped, truncated at the apex and not conduplicate, has no stipule primordium at the base but does have some inconspicuous teeth in the margin that are not glandular. The leaf primordium is triangular, cycloidal at the apex, conduplicate, has two stipule primordia at the base, has one gland-tooth at the apex occurring at first and some gland-teeth in the margin that occur later. In morphology, the "bract" is also different to the vegetative leaf in some characteristics that were also illustrated in the present paper. Based on the hypothesis that the bract is more similar to the vegetative leaf than the tepal, we considered that the so-called "bract" of C.japonicum might be the tepal of the pistillate flower in morphological nature. Therefore, each pistillate flower contains a tepal and a carpel. We did not find any trace of other floral organs in the morphogenesis of the pistillate flower. Therefore we considered that the unicarpellate status of extant Cercidiphyllum might be to highly reduce and advance characteristics that make the extant Cercidiphyllum isolated from both fossil Cercidiphyllum-like plants and its extant affinities.  相似文献   

17.
Floral morphogenesis and the development of Cercidiphyllum japonicum Sieb.et Zucc.were observed by scanning electronmicroscopy(SEM).The results showed that the pistillate inflorescences were congested spikes with the flowers arrangedopposite.Great differences between the so-called"bract"and the vegetative leaf were observed both in morphogenesis andmorphology.In morphogenesis,the"bract"primordium is crescent-shaped,truncated at the apex and not conduplicate,has no stipule primordium at the base but does have some inconspicuous teeth in the margin that are not glandular.Theleaf primordium is triangular,cycloidal at the apex,conduplicate,has two stipule primordia at the base,has one gland-toothat the apex occurring at first and some gland-teeth in the margin that occur later.In morphology,the"bract"is also differentto the vegetative leaf in some characteristics that were also illustrated in the present paper.Based on the hypothesis thatthe bract is more similar to the vegetative leaf than the tepal,we considered that the so-called"bract"of C.japonicum mightbe the tepal of the pistillate flower in morphological nature.Therefore,each pistillate flower contains a tepal and a carpel.We did not find any trace of other floral organs in the morphogenesis of the pistillate flower.Therefore we consideredthat the unicarpellate status of extant Cercidiphyllum might be to highly reduce and advance characteristics that make theextant Cercidiphyllum isolated from both fossil Cercidiphyllum-like plants and its extant affinities.  相似文献   

18.
Developmental evidence shows that the acervulus, a distinctive flower cluster found only in the chamaedoreoid group of palms, is a form of cincinnus. In Hyophorbe indica Gaertner, the unit consists of a row of sessile flowers, the upper 3–4, staminate and the basal flower, pistillate. During initiation, each new flower originates from divisions in the T2 and underlying layers of the lower right or left flank of the apex of the preceding flower. A bract subtending the first flower is evident in early stages, is displaced basipetally as the flowers are formed, but is obscured when flowers are mature. No other bracts are associated with the unit. One to two outer bundles of the vascular cylinder of the rachilla develop first to the uppermost flower. Subsequently, bundles to other flowers arise as lower branches of the first bundle and from other, often small outer bundles of the rachilla that become floral traces or produce one or more branches to a flower. Many of the bundles supplying the flowers bend sharply downward in the cortex of the rachilla, apparently reflecting the basipetal sequence of floral inception.  相似文献   

19.
The development of the inflorescence and flowers are described for Gymnotheca chinensis Decaisne (Saururaceae), which is native only to southeast China. The inflorescence is a short terminal spike of about 50–70 flowers, each subtended by a small bract. There are no showy involucral bracts. The bracts are initiated before the flowers, in acropetal order. Flowers tend to be initiated in whorls of three which alternate with the previous whorl members. No perianth is present. The flower contains six stamens, and four carpels fused in an inferior ovary containing 40–60 ovules on four parietal placentae. Floral symmetry is dorsiventral from inception and throughout organ initiation. Floral organs are initiated in the following order: 1) median adaxial stamen, 2) a pair of lateral common primordia which bifurcate radially to produce two stamen primordia each, 3) median abaxial stamen, 4) a pair of lateral carpel primordia, 5) median adaxial carpel, 6) median abaxial carpel. This order of initiation differs from that of any other Saururaceae previously investigated. The inferior ovary results from intercalary growth below the level of stamen attachment; the style elongates by intercalary growth, and the four stigmas remain free. The floral structure of Gymnotheca is relatively advanced compared to Saururus, but its assemblage of specializations differs from that of either Anemopsis or Houttuynia, the other derived genera in the Saururaceae.  相似文献   

20.
Mourera fluviatilis from northern South America is a spectacular member of the Podostemaceae (river-weeds). Its raceme-like inflorescences are up to 64 cm long and have 40–90 flowers arranged in two opposite rows. Inflorescence development starts with the initiation of a double-sheathed (dithecous) bract in a terminal position. All lateral bracts (again dithecous) are initiated in basipetal order along the two flanks of the inflorescence. Each gap between two neighboring bracts contains a single flower. The flowers are bisexual, each with a whorl of 16–20 ligulate tepals and 14–40 stamens, which are arranged in one or two whorls. Floral development starts with the formation of a girdling primordium rim around a two-lobed primordial gynoecium. Stamen and tepal initiation is centrifugal on the girdling primordium. The anthers are introrse or extrorse, depending on stamen position. Seedlings develop two entire, threadlike cotyledons, followed by forked filamentous leaves, which arise from the plumular pole. The radicular pole of the hypocotyl develops into a claw-shaped holdfast that fixes the young plant to the rock. The developmental morphologies of Mourera fluviatilis and other members of the Mourera group (including Lonchostephus and Tulasneantha) fit well with the Podostemoideae bauplan known from other New World genera, such as Apinagia and Marathrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号