首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The PCK Clade, represented by six to nine genera, is a monophyletic group situated within the Paniceae tribe. The highly diverse inflorescences within the PCK Clade provide an interesting system for the study of morphological evolution and also may aid in better understanding its unclear systematics. The inflorescence structure of 110 members of the PCK Clade has been investigated. Inflorescences are polytelic showing different levels of truncation. At least 21 different inflorescence subtypes were identified. Fourteen variable inflorescence characters were found, among which some have suprageneric or infrageneric value and others are polymorphic. A key for the identification of inflorescence types is presented. Nine processes have been identified as responsible for inflorescence diversification. Highly branched inflorescences with different internode lengths are present in the basal genus whereas truncated inflorescence morphologies appear late in the history of the clade. The precise timing of morphological changes is impossible to assess until we have a well supported phylogeny for the PCK Clade.  相似文献   

2.
Within the Poaceae, inflorescence diversification and its bearing on phylogeny and evolution are exceedingly complex. We used phylogenetic information of the "finger millet clade," a group of grasses with digitate inflorescences, to study the inflorescence diversification. This clade appears monophyletic in the morphological and molecular phylogenetic analyses. Three well-supported clades are shown in our cpDNA-derived phylogeny, with clades I and III consisting of species of Chloris and Microchloa, respectively, and clade II including species of Cynodon, Dactyloctenium, and Eleusine. Variation appears at different times throughout development. Changes involving primordium number and arrangement occur very early, changes involving duration of primordium activity occur much later. Characters derived from the comparison of developmental sequences were optimized onto the most parsimonious tree. The developmental characters were congruent with the molecular phylogeny. Two developmental characters may not be homologous in the Chloris subclade and the Cynodon subclade.  相似文献   

3.
Abstract.  The subtribe Anisopliina (Scarabaeidae: Rutelinae: Anomalini) is associated with grasses, and its species are distributed in the Palaearctic, Oriental, Ethiopian, Nearctic and Neotropical biogeographical regions. Phylogenetic analysis of adult morphological characters was conducted to examine the monophyly and classification of the group, as well as to examine characters associated with grass pollinivory and graminivory. We review the biology, phylogeny and classification of the Anisopliina and provide an overview of each genus. The analysis of ninety-one morphological characters using parsimony does not support the monophyly of the subtribe Anisopliina. Instead, the results provide support for a group referred to here as the anisopliine clade, a circum-Mediterranean group, forming an internal clade within the well-supported tribe Anomalini. Sister group relationships are discussed, possibly being associated with a New World anomaline taxon. Character states associated with grass herbivory, including mouthpart and leg characters, are discussed based on the phylogenetic analysis. Within the Anomalini, an evolutionary shift from generalized leaf feeding to grass associations and grass pollen feeding is supported.  相似文献   

4.
Grasses exhibit a great variety of inflorescence forms and these appear homoplasious when mapped onto cladograms. The overall pattern is sufficiently complex that it is difficult to analyze inflorescence evolution. We have reduced the complexity of the problem by examining one group of grasses, the panicoid "bristle clade," which exhibits a less complex pattern of variation. The clade is morphologically defined by inflorescences bearing both spikelets and sterile bristles and is monophyletic in both morphological and molecular phylogenetic analyses. We have constructed a chloroplast DNA phylogeny of the three main genera, which finds three well-supported clades, two comprising species placed in Setaria and one of Pennisetum + Cenchrus. In this tree Cenchrus is monophyletic, but both Setaria and Pennisetum are paraphyletic. Developmental morphology of these groups is very similar at early stages. Changes in axis ramification, primordial differentiation, and axis elongation account for most variation in mature inflorescence morphology. Characters derived from comparisons of developmental sequences were optimized onto one of the most parsimonious trees. Most developmental characters were congruent with the molecular phylogeny except for three reversals in the subclade containing S. barbata, S. palmifolia, and two accessions of S. poiretiana. Changes in just a handful of developmental events account for inflorescence evolution in the bristle clade, and similar changes may account for inflorescence diversity in the grasses as a whole.  相似文献   

5.
? Premise of the study: Phylogenies based on molecular data are revealing that generalizations about complex morphological structures often obscure variation and developmental patterns important for understanding the evolution of forms, as is the case for inflorescence morphology within the well-supported MGCA clade (Menyanthaceae + Goodeniaceae + Calyceraceae + Asteraceae). While the basal families share a basic thyrsic/thyrsoid structure of their inflorescences, Asteraceae possesses a capitulum that is widely interpreted as a racemose, condensed inflorescence. Elucidating the poorly known inflorescence structure of Calyceraceae, sister to Asteraceae, should help clarify how the Asteraceae capitulum evolved from thyrsic/thyrsoid inflorescences. ? Methods: The early development and structure of the inflorescence of eight species (five genera) of Calyceraceae were studied by SEM, and patterns of evolutionary change were interpreted via phylogenetic character mapping. ? Key results: The basic inflorescence structure of Calyceraceae is a cephalioid (a very condensed botryoid/thyrsoid). Optimization of inflorescence characters on a DNA sequence-derived tree suggests that the Asteraceae capitulum derives from a simple cephalioid through two morphological changes: loss of the terminal flower and suppression of the cymose branching pattern in the peripheral branches. ? Conclusions: Widely understood as a condensed raceme, the Asteraceae capitulum is the evolutionary result of a very reduced, condensed thyrsoid. Starting from that point, evolution worked separately only on the racemose developmental control/pattern within Asteraceae and mainly on the cymose developmental control/pattern within Calyceraceae, producing head-like inflorescences in both groups but with very different diversification potential. We also discuss possible remnants of the ancestral cephalioid structure in some Asteraceae.  相似文献   

6.
7.
The species of the Cynodonteae tribe show great morphological diversity in their reproductive structures. Previous studies where inflorescences were comparatively analysed in the context of phylogeny have shown that although grass inflorescences seem to be excessively variable, there are certain aspects of inflorescences that store relevant information on the evolution and systematics in Poaceae. We have analysed and compared the inflorescence structures of species belonging to the Hilariinae, Monanthochloinae, Scleropogoninae, and Muhlenbergiinae subtribes. Considering the most relevant morphological characters, the most recurrent types of inflorescences in the lineage were determined by means of a principal coordinates analysis. To understand the evolution of inflorescence morphology, ancestral reconstructions of inflorescence characters were performed using the Bayesian inference method. The results obtained demonstrate that the processes of homogenization and truncation might account for the diversity observed in adult inflorescences. Five different types of inflorescences were identified out of 36 theoretical possibilities. Amongst these, inflorescence type 1 (panicle of spikelets, with a terminal spikelet, non-homogenized, and bearing third- or higher-order branches) was found to be the most frequent in the studied group. Ancestral reconstructions of morphological characters allowed us to suggest that the ancestor of the group might have had an inflorescence with the form of a raceme of spikelets, non-truncated and bearing first-order branches. More complex inflorescences bearing no terminal spikelets and having branches of higher order might have diverged this lineage.  相似文献   

8.
When the morphological diversity of a clade of species is quantified as the among-species variance in morphology, that diversity is a joint consequence of the phylogenetic structure of the clade (i.e., temporal pattern of speciation events) and the rates of change in the morphological traits of interest. Extrinsic factors have previously been linked to variation in the rate of morphological change among clades. Here, we ask whether species co-occurrence is positively correlated with the rate of change in several ecologically relevant morphological characters using the North American freshwater fish clade Percina (Teleostei: Etheostomatinae). We constructed a time-calibrated phylogenetic tree of Percina from mtDNA sequence data, gathered data on eight morphological characters from 37 species, used a principal components analysis to identify the primary axes of morphological variation, and analyzed 16,094 collection records to estimate species co-occurrence. We then calculated standardized independent contrasts (SIC) of the morphological traits (rate of change) at each node, estimated ancestral species co-occurrence, and quantified the correlation between species co-occurrence and rate of morphological change. We find that morphology changes more quickly when co-occurrence is greater in Percina . Our results provide strong evidence that co-occurrence among close relatives is linked to the morphological diversification of this clade.  相似文献   

9.
Tetrastigma (Miq.) Planch. (Vitaceae) is a genus with ca. 100 species showing great morphological diversity. Previous molecular phylogenetic studies suggested that traditional classification systems are not consistent with the molecular phylogeny, and Tetrastigma is undergoing further systematic investigation. We traced the evolutionary trends of 20 morphological characters within a robust phylogenetic framework. Our results revealed that many morphological characters show either multiple transitions or few state changes, however, some characters show distinct variation. The two subgenera in Tetrastigma (subgen. Tetrastigma and subgen. Palmicirrata) based on unbranched/bifurcate versus digitately branched tendrils are not supported because subgen. Tetrastigma is paraphyletic. However, the unbranched versus bifurcate/digitately branched tendril is of taxonomic utility to characterize some of the major clades. Inflorescences in Tetrastigma appear axillary, but are leaf‐opposed on a compressed axillary shoot. We found most of the species in Tetrastigma retained the ancestral compound dichasial inflorescence, except those of clade IV that have derived pseudo‐umbellate inflorescences. Other characters including habit, leaf organization, and berry shape provide additional morphological support for the major clades. Our morphological analysis and recent molecular study suggest each of the five major clades within Tetrastigma be treated as distinct taxonomic sections (five sections in the genus).  相似文献   

10.

Background and Aims

Inflorescence forms of panicoid grasses (Panicoideae s.s.) are remarkably diverse and they look very labile to human eyes; however, when performing a close inspection one can identify just a small subset of inflorescence types among a huge morphospace of possibilities. Consequently, some evolutionary constraints have restricted, to some extent, the diversification of their inflorescence. Developmental and genetic mechanisms, the photosynthetic type and plant longevity have been postulated as candidate constraints for angiosperms and panicoids in particular; however, it is not clear how these factors operate and which of these have played a key role during the grass inflorescence evolution. To gain insight into this matter the macroevolutionary aspects of panicoid inflorescences are investigated.

Methods

The inflorescence aspect (lax versus condensed), homogenization, truncation of the terminal spikelet, plant longevity and photosynthetic type were the traits selected for this study. Maximum likelihood and Bayesian Markov chain Monte Carlo methods were used to test different models of evolution and to evaluate the existence of evolutionary correlation among the traits. Both, models and evolutionary correlation were tested and analysed in a phylogenetic context by plotting the characters on a series of trees. For those cases in which the correlation was confirmed, test of contingency and order of trait acquisition were preformed to explore further the patterns of such co-evolution.

Key Results

The data reject the independent model of inflorescence trait evolution and confirmed the existence of evolutionary contingency. The results support the general trend of homogenization being a prerequisite for the loss of the terminal spikelet of the main axis. There was no evidence for temporal order in the gain of homogenization and condensation; consequently, the homogenization and condensation could occur simultaneously. The correlation between inflorescence traits with plant longevity and photosynthetic type is not confirmed.

Conclusions

The findings indicate that the lability of the panicoid inflorescence is apparent, not real. The results indicate that the history of the panicoids inflorescence is a combination of inflorescence trait contingency and order of character acquisition. These indicate that developmental and genetic mechanisms may be important constraints that have limited the diversification of the inflorescence form in panicoid grasses.Key words: Inflorescence, morphology, evolution, panicoids, Panicoideae, Poaceae  相似文献   

11.
Zhang N  Zhao S  Shen Q 《Mycologia》2011,103(6):1267-1276
The family Magnaporthaceae contains devastating fungal cereal and grass pathogens, such as Magnaporthe oryzae (rice blast fungus, formerly known as M. grisea), M. poae (summer patch pathogen of turf grasses) and Gaeumannomyces graminis (take-all fungus of various cereals and grasses), which are popular model organisms in fungal biology and host-pathogen interaction studies. Despite their ecological and economic importance, the phylogenetic relationships among the constituent species remain ambiguous due to the lack of convincing morphological characters and paucity of molecular data for the majority of the non-model species in the family. In this study our multilocus phylogeny suggests that both Magnaporthe and Gaeumannomyces are polyphyletic genera. The phylogeny also provides insights into fungal biology and pathogenesis. Magnaporthe oryzae formed a basal clade, while M. poae and M. rhizophila formed another well supported clade with G. incrustans and G. graminis. The basal species infect both root and aerial parts of the plant host, while the aerial infection capacity seems to be lost in the taxa of the latter clade. The phylogeny is corroborated by evolution of the anamorphs and a cAMP-dependent protein kinase (CPKA) gene. Magnaporthe oryzae produces Pyricularia, while taxa in the latter clade all produce Phialophora-like anamorphs. CPKA is present in animals and many fungal lineages with various functions. In M. oryzae CPKA is essential for the formation of functional appressoria for leaf penetration. In root-infecting G. graminis var. tritici and M. poae however only non-functional CPKA homologous pseudogenes were found in their genomes. The study indicates that anamorphic and ecological features are more informative than the teleomorphic characters in defining monophyletic groups among these taxa.  相似文献   

12.
The evolutionary history of the family Bovidae remains controversial despite past comprehensive morphological and genetic investigations. In an effort to resolve some of the systematic uncertainties within the group, a combined molecular phylogeny was constructed based on four independent nuclear DNA markers (2,573 characters) and three mitochondrial DNA genes (1,690 characters) for 34 bovid taxa representing all seven of the currently recognized bovid subfamilies. The nuclear DNA fragments were analyzed separately and in combination after partition homogeneity tests were performed. There was no significant rate heterogeneity among lineages, and retention index values indicated the general absence of homoplasy in the nuclear DNA data. The conservative nuclear DNA data were remarkably effective in resolving associations among bovid subfamilies, which had a rapid radiation dating back to approximately 23 MYA. All analyses supported the monophyly of the Bovinae (cow, nilgai, and kudu clade) as a sister lineage to the remaining bovid subfamilies, and the data convincingly suggest that the subfamilies Alcelaphinae (hartebeest, tsessebe, and wildebeest group) and Hippotraginae (roan, sable, and gemsbok clade) share a close evolutionary relationship and together form a sister clade to the more primitive Caprinae (represented by sheep, goat, and muskox). The problematic Reduncinae (waterbuck, reedbuck) seem to be the earliest-diverging group of the Caprinae/Alcelaphinae/Hippotraginae clade, whereas the Antilopinae (gazelle and dwarf antelope clade) were always polyphyletic. The sequence data suggest that the initial diversification of the Bovidae took place in Eurasia and that lineages such as the Cephalophinae and other enigmatic taxa (impala, suni, and klipspringer) most likely originated, more or less contemporaneously, in Africa.  相似文献   

13.
Multiple processes − including dispersal, morphological innovation, and habitat change − are frequently cited as catalysts for increased diversification. We investigate these processes and the causal linkages among them in the genus Cyphostemma (Vitaceae), a clade comprising ∼200 species that is unique in the Vitaceae for its diversity of growth habits. We reconstruct time‐calibrated evolutionary relationships among 64 species in the genus using five nuclear and chloroplast markers and infer the group's morphological and biogeographic history. We test for changes in speciation rate and evaluate the temporal association and sequencing of events with respect to dispersal, habitat change, and morphological evolution using a Monte Carlo simulation approach. In Cyphostemma, neither dispersal nor morphological evolution is associated with shifts in speciation rate, but dispersal is associated with evolutionary shifts in growth form. Evolution of stem succulence, in particular, is associated with adaptation to local, pre‐existing conditions following long‐distance dispersal, not habitat change in situ. We suggest that the pattern of association between dispersal, morphological innovation, and diversification may depend on the particular characters under study. Lineages with evolutionarily labile characters, such as stem succulence, do not necessarily conform to the notion of niche conservatism and instead demonstrate remarkable morphological adaptation to local climate and edaphic conditions following dispersal.  相似文献   

14.
The evolution of hominin growth and life history has long been a subject of intensive research, but it is only recently that paleoanthropologists have considered the ontogenetic basis of human morphological evolution. To date, most human EvoDevo studies have focused on developmental patterns in extant African apes and humans. However, the Old World monkey tribe Papionini, a diverse clade whose members resemble hominins in their ecology and population structure, has been proposed as an alternative model for human craniofacial evolution. This paper reviews prior studies of papionin development and socioecology and presents new analyses of juvenile shape variation and ontogeny to address fundamental questions concerning primate cranial development, including: (1) When are cranial shape differences between species established? (2) How do epigenetic influences modulate early-arising pattern differences? (3) How much do postnatal developmental trajectories vary? (4) What is the impact of developmental variation on adult cranial shape? and, (5) What role do environmental factors play in establishing adult cranial form? Results of this inquiry suggest that species differences in cranial morphology arise during prenatal or earliest postnatal development. This is true even for late-arising features that develop under the influence of epigenetic factors such as mechanical loading. Papionins largely retain a shared, ancestral pattern of ontogenetic shape change, but large size and sexual dimorphism are associated with divergent developmental trajectories, suggesting differences in cranial integration. Developmental simulation studies indicate that postnatal ontogenetic variation has a limited influence on adult cranial morphology, leaving early morphogenesis as the primary determinant of cranial shape. The ability of social factors to influence craniofacial development in Mandrillus suggests a possible role for phentotypic plasticity in the diversification of primate cranial form. The implications of these findings for taxonomic attribution of juvenile fossils, the developmental basis of early hominin characters, and hominin cranial diversity are discussed.  相似文献   

15.
The Procyonidae (Mammalia: Carnivora) have played a central role in resolving the controversial systematics of the giant and red pandas, but phylogenetic relationships of species within the family itself have received much less attention. Cladistic analyses of morphological characters conducted during the last two decades have resulted in topologies that group ecologically and morphologically similar taxa together. Specifically, the highly arboreal and frugivorous kinkajou (Potos flavus) and olingos (Bassaricyon) define one clade, whereas the more terrestrial and omnivorous coatis (Nasua), raccoons (Procyon), and ringtails (Bassariscus) define another clade, with the similar-sized Nasua and Procyon joined as sister taxa in this latter group. These relationships, however, have not been tested with molecular sequence data. We examined procyonid phylogenetics based on combined data from nine nuclear and two mitochondrial gene segments totaling 6534bp. We were able to fully resolve relationships within the family with strongly supported and congruent results from maximum parsimony, maximum likelihood, minimum evolution, and Bayesian analyses. We identified three distinct lineages within the family: a (Nasua, Bassaricyon) clade, a (Bassariscus, Procyon) clade, and a Potos lineage, the last of which is sister to the other two clades. These findings, which are in strong disagreement with prior fossil and morphology-based assessments of procyonid relationships, reemphasize the morphological and ecological flexibility of these taxa. In particular, morphological similarities between unrelated genera possibly reflect convergence associated with similar lifestyles and diets rather than ancestry. Furthermore, incongruence between the molecular supermatrix and a morphological character matrix comprised mostly of dental characters [Baskin, J.A., 2004. Bassariscus and Probassariscus (Mammalia, Carnivora, Procyonidae) from the early Barstovian (Middle Miocene). J. Vert. Paleo. 24, 709-720] may be due to non-independence among atomized dental characters that does not take into account the high developmental genetic correlation of these characters. Finally, molecular divergence dating analyses using a relaxed molecular clock approach suggest that intergeneric and intrageneric splits in the Procyonidae mostly occurred in the Miocene. The inferred divergence times for intrageneric splits for several genera whose ranges are bisected by the Panamanian Isthmus is significant because they suggest diversification well precedes the Great American Interchange, which has long been considered a primary underlying mechanism for procyonid evolution.  相似文献   

16.
We explored the usefulness of mtDNA data in assessing phylogenetic relationships within the Ascidiacea. Although ascidians are a crucial group in studies of deuterostome evolution and the origin of chordates, little molecular work has been done to ascertain the evolutionary relationships within the class, and in the studies performed to date the key group Aplousobranchiata has not been adequately represented. We present a phylogenetic analysis based on mitochondrial cytochrome c oxidase subunit I (COI) sequences of 37 ascidian species, mainly Aplousobranchiata (26 species). Our data retrieve the main groups of ascidians, although Phlebobranchiata appeared paraphyletic in some analyses. Aplousobranch ascidians consistently appeared as a derived group, suggesting that their simple branchial structure is not a pleisiomorphic feature. Relationships between the main groups of ascidians were not conclusively determined, the sister group of Aplousobranchiata was the Stolidobranchiata or the Phlebobranchiata, depending on the analysis. Therefore, our data could not confirm an Enterogona clade (Aplousobranchiata+Phlebobranchiata). All of the tree topologies confirmed previous ideas, based on morphological and biochemical characters, suggesting that Cionidae and Diazonidae are members of the clade Aplousobranchiata, with Cionidae occupying a basal position within them in our analyses. Within the Aplousobranchiata, we found some stable clades that provide new data on the evolutionary relationships within this large group of ascidians, and that may prompt a re-evaluation of some morphological characters.  相似文献   

17.
Morphological evolution of Ceratophryinae (Anura, Neobatrachia)   总被引:1,自引:0,他引:1  
Body form is one of the major consequences of development, and diversification of body shapes implies developmental changes among species. In anurans, changes in the timing of developmental events or heterochrony, have been emphasized as a source of variation in the patterns of development that has lead to diverse morphology. Herein, different approaches are used to explore morphological traits in members of the Ceratophryinae (Anura: Leptodactylidae), a group of frogs with some features produced by overdevelopment. Cladistic analyses were conducted in order to distinguish the shared history of Ceratophrys, Chacophrys and Lepidobatrachus and other anurans. From these studies, morphological variation of selected skeletal features in ceratophryines reveals the presence of ancient structures, which have been considered lost in the neobatrachian phylogeny, integrated in particular designs. Thin-plate spline morphometric analyses of skull shapes among ceratophryines describe Lepidobatrachus as the most distinctive shape. Moreover, thin-plate spline morphometric analyses among anurans show divergent skull shapes between ceratophryines and other anurans, reflecting that the skull shapes of ceratophryines are a result of peramorphosis (increase of developmental rates). This study represents the first detailed examination of the role of peramorphosis in a clade of anurans.  相似文献   

18.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

19.
External morphological characters are the basis of our understanding of diversity and species relationships in many darter clades. The past decade has seen the publication of many studies utilizing mtDNA sequence data to investigate darter phylogenetics, but only recently have nuclear genes been used to investigate darter relationships. Despite a long tradition of use in darter systematics few studies have examined the phylogenetic utility of external morphological characters in estimating relationships among species in darter clades. We present DNA sequence data from the mitochondrial cytochrome b (cytb) gene, the nuclear encoded S7 intron 1, and discretely coded external morphological characters for all 20 species in the darter clade Nothonotus. Bayesian phylogenetic analyses result in phylogenies that are in broad agreement with previous studies. The cytb gene tree is well resolved, while the nuclear S7 gene tree lacks phylogenetic resolution, node support, and is characterized by a lack of reciprocal monophyly for many of the Nothonotus species. The phylogenies resulting from analysis of the morphological dataset lack resolution, but nodes present are found in the cytb and S7 gene trees. The highest resolution and node support is found in the Bayesian combined data phylogeny. Based on our results we propose continued exploration of the phylogenetic utility of external morphological characters in other darter clades. Given the extensive lack of reciprocal monophyly of species observed in the S7 gene tree we predict that nuclear gene sequences may have limited utility in intraspecific phylogeographic studies of Nothonotus darters.  相似文献   

20.
The evolutionary origins of the morphological and taxonomic diversity of angiosperms is poorly known. We used the genus Melianthus to explore the diversification of the southern African flora. Melianthus comprises eight species, and a phylogeny based on one nuclear and two plastid genes, as well as a morphological data set, confirmed that the genus is monophyletic. The two earliest diverging lineages are found in relatively mesic habitats, whereas the two terminal clades (an eastern and a western clade), each with three species, favor more arid habitats. The eastern clade is largely restricted to the summer-rainfall parts of southern Africa, and the western clade is found in winter-rainfall region. Molecular dating indicates a mid-Tertiary origin of the genus, with diversification of the eastern and western clades coincident with the Late Miocene-Pliocene uplift of the Escarpment mountains and the establishment of summer aridity along the west coast. The remarkably complex flowers are indicative of sunbird pollination, but many smaller birds can also visit. Speciation may be the consequence of allopatric divergence into edaphic-climatic niches. Divergence in flower and inflorescence morphology might be in response to the divergent pressures for nectar conservation in arid regions coupled with the need for signaling to avian pollinators in generally shrubby vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号