首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Certain mutations isolated in the 5' untranslated region (5'UTR) of the chloroplast rps7 gene in Chlamydomonas reduce expression of reporter genes. Second site suppressors in this 5'UTR sequence restore reporter expression. 5'UTR sequences with the original mutations fail to bind a 20-kD protein, one of five proteins that bind to leaders of several chloroplast genes. However, 5'UTRs from suppressed mutants restore binding to this protein but do not bind a 47-kD protein present on the wild type and the original mutant 5'UTRs. The 20-kD protein was shown to be the S7 protein of the chloroplast ribosomal small subunit encoded by rps7, whereas the 47-kD protein was shown to be RB47, a poly(A) binding protein. Our data are consistent with the hypothesis that the S7 protein plays either a general or a specific regulatory role in translation initiation in the chloroplast.  相似文献   

3.
T Hirose  M Sugiura 《The EMBO journal》1996,15(7):1687-1695
Translational regulation is an important step of gene expression in chloroplasts. To analyze biochemical mechanisms of translational regulation unique to higher plant chloroplasts, an in vitro translation system has been developed from tobacco chloroplasts. Conditions for chloroplast extraction and the in vitro translation reaction have been optimized with a tobacco psbA-lacZ fusion mRNA. The in vitro system supports accurate translation of a variety of chloroplasts mRNAs. Using a series of mutant psbA mRNAs, we showed that three elements within the 5'-untranslated region of the mRNA are required for translation. Two of them are complementary to the 3'-terminus of chloroplast 16S rRNA (termed RBS1 and RBS2) and the other is an AU-rich sequence (UAAAUAAA) located between RBS1 and RBS2 and is termed the AU box. mRNA competition experiments using the in vitro translation reaction and gel mobility shift assays revealed the existence of a trans-acting factor(s) for translation and its possible interaction with the AU box. We propose a model for the initiation of psbA translation whereby RBS1 and RBS2 bind cooperatively to the 3'-end of 16S rRNA resulting in looping out of the AU box, which facilitates the interaction of a trans-acting factor(s).  相似文献   

4.
The initiation of protein synthesis on mRNAs within eukaryotic cells is achieved either by a 5' cap-dependent mechanism or through internal initiation directed by an internal ribosome entry site (IRES). Picornavirus IRES elements, located in the 5' untranslated region (5'UTR), contain extensive secondary structure and multiple upstream AUG codons. These features can be expected to inhibit cap-dependent initiation of translation. However, we have now shown that certain mutant hepatitis C virus-like picornavirus IRES elements (from porcine teschovirus-1 and avian encephalomyelitis virus), which are unable to direct internal initiation, are not significant barriers to efficient translation of capped monocistronic mRNAs that contain these defective elements within their 5'UTRs. Moreover, the translation of these mRNAs is highly sensitive to the expression of an enterovirus 2A protease (which induces cleavage of eIF4G) and is also inhibited by hippuristanol, a specific inhibitor of eIF4A function, in contrast to their parental wild-type IRES elements. These results provide a possible basis for the evolution of viral IRES elements within the context of functional mRNAs that are translated by a cap-dependent mechanism.  相似文献   

5.
Random mutations were generated in the sequence for the 5' untranslated region (5'UTR) of the Chlamydomonas reinhardtii chloroplast rps7 mRNA by PCR, the coding sequence for the mutant leaders fused upstream of the lacZ' reporter in pUC18, and transformed into Escherichia coli, and white colonies were selected. Twelve single base pair changes were found at different positions in the rps7 5'UTR in 207 white colonies examined. Seven of the 12 mutant leaders allowed accumulation of abundant lacZ' message. These mutant rps7 leaders were ligated into an aadA expression cassette and transformed into the chloroplast of C. reinhardtii and into E. coli. In vivo spectinomycin-resistant growth rates and in vitro aminoglycoside adenyltransferase enzyme activity varied considerably between different mutants but were remarkably similar for a given mutant expressed in the Chlamydomonas chloroplast and in E. coli. The variable effect of the mutants on aadA reporter expression and their complete abolition of lacZ' reporter expression in E. coli suggests differences in the interaction between the 5'UTR of rps7 and aadA or lacZ' coding regions. Several rps7 5'UTR mutations affected the predicted folding pattern of the 5'UTR by weakening the stability of stem structures. Site-directed secondary mutations generated to restore these structures in the second stem suppressed the loss of reporter activity caused by the original mutations. Additional site-directed mutations that were predicted to further strengthen (A-U-->G-C) or weaken (G-C-->A-U) the second stem of the rps7 leader both resulted in reduced reporter expression. This genetic evidence combined with differences between mutant and wild-type UV melting profiles and RNase T1 protection gel shifts further indicate that the predicted wild-type folding pattern in the 5'UTR is likely to play an essential role in translation initiation.  相似文献   

6.
Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 Å. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs.  相似文献   

7.
The complex architecture of human insulin-like growth factor (IGF) II-leader 1 of 592 nucleotides (nt), with one open reading frame (ORF), and the potential to fold into stable structures makes efficient linear ribosomal scanning difficult to comprehend. Indeed, leader 1-driven reporter expression is low in rabbit reticulocyte lysate. Contrarily, leader 1 is very efficient in cells. Therefore, we tested whether this 5'UTR uses an alternative mechanism for translation initiation in vivo, internal entry or ribosomal shunting.Internal initiation was tested by introducing leader 1 into the intercistronic region of a bicistronic vector. Second cistron expression, driven by leader 1, was lower than by the intercistronic beta-globin 5'UTR, indicating that leader 1 does not contain an internal ribosomal entry site (IRES).Shunting was tested by inserting hairpin (HP) structures, capable of blocking ribosomal scanning, at eight positions in leader 1. After transfection, these mutant 5'UTRs were incapable of directing reporter expression. Less stable HPs at the same positions increased the activity to 50% of wild-type activity, indicating that insertions at these positions are not disastrous for initiation. These data indicate that the translational machinery encounters major parts of leader 1.As scanning seems unlikely, and internal entry and shunting were shown not to occur, we discuss a modified scanning mechanism for architecturally complex 5'UTRs.  相似文献   

8.
9.
The 5' untranslated leader (Omega sequence) of tobacco mosaic virus (TMV) genomic RNA was utilized as a translational enhancer sequence in expression of the 17 kDa putative movement protein (pr17) of potato leaf roll luteovirus (PLRV). In vitro translation of RNAs transcribed from appropriate chimeric constructs, as well as their expression in transgenic potato plants, resulted in the expected wild-type pr17 protein, as well as in larger translational products recognized by pr17-specific antisera. Mutational analyses revealed that the extra proteins were translated by non-canonical initiation at AUU codons present in the wild-type Omega sequence. In the plant system translation initiated predominantly at the AUU codon at positions 63-65 of the Omega sequence. Additional AUU codons in a different reading frame of the Omega sequence also showed the capacity for efficient translation initiation in vitro. These results extend the previously noted activity of the TMV 5' leader sequence in ribosome binding and translation enhancement in that the TMV translation enhancer can mediate non-canonical translation initiation in vitro and in vivo.  相似文献   

10.
The expression of cathepsin L, a lysosomal protease, is known to be elevated in cancer and other pathologies. Multiple splice variants of human cathepsin L with variable 5'UTRs exist, which encode for the same protein. Previously we have observed that variant hCATL A (bearing the longest 5'UTR) was translated in vitro with significantly lower efficiency than variant hCATL AIII (bearing the shortest 5'UTR). Contrary to these findings, results of the present study reveal that in cancer cells, hCATL A mRNA exhibits higher translatability in spite of having lower stability than AIII. This is the first report demonstrating a highly contrasting trend in translation efficiencies of hCATL variants in rabbit reticulocytes and live cells. Expression from chimeric mRNAs containing 5'UTRs of A or AIII upstream to luciferase reporter cDNA established the A UTR to be the sole determinant for this effect. Transient transfections of bicistronic plasmids and mRNAs confirmed the presence of a functional Internal Ribosome Entry Site in this UTR. Our data suggest that differential stability and translation initiation modes mediated by the 5'UTRs of human cathepsin L variants are involved in regulating its expression.  相似文献   

11.
A Pacheco  JL Twiss 《PloS one》2012,7(7):e40788
Transport of neuronal mRNAs into distal nerve terminals and growth cones allows axonal processes to generate proteins autonomous from the cell body. While the mechanisms for targeting mRNAs for transport into axons has received much attention, how specificity is provided to the localized translational apparatus remains largely unknown. In other cellular systems, protein synthesis can be regulated by both cap-dependent and cap-independent mechanisms. The possibility that these mechanisms are used by axons has not been tested. Here, we have used expression constructs encoding axonally targeted bicistronic reporter mRNAs to determine if sensory axons can translate mRNAs through cap-independent mechanisms. Our data show that the well-defined IRES element of encephalomyocarditis virus (EMCV) can drive internal translational initiation of a bicistronic reporter mRNA in distal DRG axons. To test the potential for cap-independent translation of cellular mRNAs, we asked if calreticulin or grp78/BiP mRNA 5'UTRs might have IRES activity in axons. Only grp78/BiP mRNA 5'UTR showed clear IRES activity in axons when placed between the open reading frames of diffusion limited fluorescent reporters. Indeed, calreticulin's 5'UTR provided an excellent control for potential read through by ribosomes, since there was no evidence of internal initiation when this UTR was placed between reporter ORFs in a bicistronic mRNA. This study shows that axons have the capacity to translate through internal ribosome entry sites, but a simple binary choice between cap-dependent and cap-independent translation cannot explain the specificity for translation of individual mRNAs in distal axons.  相似文献   

12.
13.
14.
The role of the 5'-untranslated region (5'UTR) in the replication of enteroviruses has been studied by using a series of poliovirus type 3 (PV3) replicons containing the chloramphenicol acetyltransferase reporter gene in which the 5'UTR was replaced by the 5'UTR of either coxsackievirus B4 or human rhinovirus 14 or composite 5'UTRs derived from sequences of PV3, human rhinovirus 14, coxsackievirus B4, or encephalomyocarditis virus. The results indicate that efficient replication of an enterovirus genome requires a compatible interaction between the 5'-terminal cloverleaf structure and the coding and/or 3'-noncoding regions of the genome. A crucial determinant of this interaction is the stem-loop formed by nucleotides 46 to 81 (stem-loop d). The independence of the cloverleaf structure formed by the 5'-terminal 88 nucleotides and the ribosome landing pad or internal ribosome entry site (IRES) was investigated by constructing a 5'UTR composed of the PV3 cloverleaf and the IRES from encephalomyocarditis virus. Chloramphenicol acetyltransferase gene-containing replicons and viruses containing this recombinant 5'UTR showed levels of replication similar to those of the corresponding genomes containing the complete PV3 5'UTR, indicating that the cloverleaf and the IRES may be regarded as functionally independent and nonoverlapping elements.  相似文献   

15.
Initiation of translation in Escherichia coli and related eubacteria involves well-defined interactions between a conserved Shine-Dalgarno (SD) sequence immediately upstream of the initiation codon in the mRNA leader and an equally conserved anti-SD sequence at the 3′ end of the 16S rRNA. SD-like sequences found in the leaders of many, but not all, mRNAs from cyanobacteria and chloroplasts are hypervariable in location, size, and base composition compared to those in E. coli, while anti-SD sequences in the respective 16S rRNAs remain highly conserved. We have examined the function of the SD-like sequences found in the leaders of four chloroplast genes of the green alga Chlamydomonas reinhardtii using replacement mutagenesis to eliminate complementarity with the anti-SD sequences and insertion of canonical SD sequences (GGAGG) at positions ?9 to ?5 relative to the initiation codon. Promoter-leader regions of the atpB, atpE, rps4, and rps7 genes representing the diversity of chloroplast SD-like sequences were fused to aadA and uidA reporter genes encoding spectinomycin resistance and GUS activity respectively. Analysis of chloroplast transformants of C. reinhardtii and transformants of E. coli carrying the wild-type and mutant reporter constructs revealed that mutagenic replacement of the putative SD sequences had no effect on the expression of either the aadA or uidA reporter genes. Chloroplast transformants with the canonical SD sequence also showed no differences in reporter gene expression, whereas expression of the reporter genes was increased by 10 to 30% in the E. coli transformants. Collectively our results suggest that even though SD-dependent initiation predominates in E. coli, this bacterium also has the capacity to initiate translation by an SD-independent mechanism. In contrast, plant chloroplasts, and very probably their cyanobacterial ancestors, appear to have adopted the SD-independent mechanism for translational initiation of most mRNAs.  相似文献   

16.
《The Journal of cell biology》1994,127(6):1537-1545
Translational regulation is a key modulator of gene expression in chloroplasts of higher plants and algae. Genetic analysis has shown that translation of chloroplast mRNAs requires nuclear-encoded factors that interact with chloroplastic mRNAs in a message-specific manner. Using site-specific mutations of the chloroplastic psbA mRNA, we show that RNA elements contained within the 5' untranslated region of the mRNA are required for translation. One of these elements is a Shine- Dalgarno consensus sequence, which is necessary for ribosome association and psbA translation. A second element required for high levels of psbA translation is located adjacent to and upstream of the Shine-Dalgarno sequence, and maps to the location on the RNA previously identified as the site of message-specific protein binding. This second element appears to act as a translational attenuator that must be overcome to activate translation. Mutations that affect the secondary structure of these RNA elements greatly reduce the level of psbA translation, suggesting that secondary structure of these RNA elements plays a role in psbA translation. These data suggest a mechanism for translational activation of the chloroplast psbA mRNA in which an RNA element containing the ribosome-binding site is bound by message- specific RNA binding proteins allowing for increased ribosome association and translation initiation. These elements may be involved in the light-regulated translation of the psbA mRNA.  相似文献   

17.
To evaluate the effect on translation of distal regions of the encoding mRNA part capable of the complementary binding to the ribosome binding site (RBS), a series of plasmids were constructed containing fragments inserted into the il3 gene and determining secondary interactions in mRNA. A comparison of the levels of the in vivo gene expression showed that the complementary interactions of the translation initiation region (TIR) with distal regions of the mRNA encoding part affect translation. The effectiveness of these interactions decreased with an increase in the distance between the RBS and the complementary mRNA region, whereas the secondary structure formed by the TIR and the adjacent mRNA region was more stable despite the presence of regions in mRNA capable of forming energetically more favorable structures involving these elements.  相似文献   

18.
Retrotransposon L1 is a mobile genetic element of the LINE family that is extremely widespread in the mammalian genome. It encodes a dicistronic mRNA, which is exceptionally rare among eukaryotic cellular mRNAs. The extremely long and GC-rich L1 5' untranslated region (5'UTR) directs synthesis of numerous copies of RNA-binding protein ORF1p per mRNA. One could suggest that the 5'UTR of L1 mRNA contained a powerful internal ribosome entry site (IRES) element. Using transfection of cultured cells with the polyadenylated monocistronic (L1 5'UTR-Fluc) or bicistronic (Rluc-L1 5'UTR-Fluc) RNA constructs, capped or uncapped, it has been firmly established that the 5'UTR of L1 does not contain an IRES. Uncapping reduces the initiation activity of the L1 5'UTR to that of background. Moreover, the translation is inhibited by upstream AUG codons in the 5'UTR. Nevertheless, this cap-dependent initiation activity of the L1 5'UTR was unexpectedly high and resembles that of the beta-actin 5'UTR (84 nucleotides long). Strikingly, the deletion of up to 80% of the nucleotide sequence of the L1 5'UTR, with most of its stem loops, does not significantly change its translation initiation efficiency. These data can modify current ideas on mechanisms used by 40S ribosomal subunits to cope with complex 5'UTRs and call into question the conception that every long GC-rich 5'UTR working with a high efficiency has to contain an IRES. Our data also demonstrate that the ORF2 translation initiation is not directed by internal initiation, either. It is very inefficient and presumably based on a reinitiation event.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号