首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在光学显微镜下对虎掌(Pinellia pedatisecta)营养器官和繁殖器官中晶体的类型和分布进行了观察和分析,探讨晶体的功能与作用机制。结果表明:(1)虎掌各个器官中都发现有晶体,且晶体类型有针晶、簇晶、砂晶和柱晶4种形态,其中针晶最为常见。(2)虎掌叶中的晶体大多以针晶状分布在叶片上表皮下的叶肉中,少数分布在叶下表皮下的叶肉中,其次砂晶和星芒状簇晶也在叶中较常见,叶中也有少量的柱晶。(3)虎掌的块茎中分布有大量的针晶束,在输导组织附近还有一些大的簇晶;虎掌的不定根中分布有不整齐的针晶和排列不规则的针晶束以及少量大的簇晶。(4)虎掌的佛焰苞中分布有针晶、簇晶和砂晶,且在佛焰苞中的针晶主要分布于上、下表皮之下的叶肉中,砂晶多分布在佛焰苞的上、下表皮上。(5)虎掌的花药壁中分布有针晶束,其方向和花药壁表面垂直,而花粉囊中只有小的簇晶。(6)虎掌的果皮和种皮上分布有大量的针晶。根据晶体在酸中的溶解性,虎掌体内所有晶体的化学成分都为草酸钙。研究认为,虎掌各个器官中的各种草酸钙晶体对于保护虎掌免受食草动物取食具有重要的作用。  相似文献   

2.
五种C4荒漠植物光合器官中含晶细胞的比较分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 为了探讨荒漠植物适应干旱环境的机理, 选择光合器官发生很大变化的5种C4荒漠植物进行了解剖结构的对比研究。结果表明, 这5种 植物中含晶细胞的数量、大小、形态和分布位置等存在差异。白梭梭(Haloxylon persicum)和梭梭(H. ammodendron)的同化枝普遍具有含晶细 胞; 沙拐枣(Calligonum mongolicum)的含晶细胞很少, 一般只分布在贮水组织或靠近栅栏组织处; 木本猪毛菜(Salsola arbuscula)的含晶细 胞也不多, 主要分布在栅栏组织和表皮细胞之间; 猪毛菜(S. collina)的含晶细胞更少, 仅在贮水组织中偶尔可见晶簇。比较梭梭、白梭梭和 沙拐枣同化枝不同部位的解剖结构发现, 梭梭同化枝基部含晶细胞最多, 中部次之, 顶部最少; 白梭梭同化枝顶部的含晶细胞数量较多, 中部 及基部较少; 沙拐枣同化枝顶部与基部的粘液细胞较多, 中部较少, 基部几乎没有栅栏组织, 而其维管组织较为发达。综合晶体的酸碱溶解性 及硝酸银组化分析结果, 并参照能谱仪的分析结果得知, 梭梭、白梭梭、沙拐枣和木本猪毛菜的叶片或同化枝中所含晶体的主要成分为草酸钙 。通过比较解剖结构发现, 梭梭和白梭梭的同化枝中含晶细胞最多, 其它3种植物的同化器官中含晶细胞较少, 而沙拐枣同化枝中有粘液细胞存 在。  相似文献   

3.
4.
Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown. Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions. Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.  相似文献   

5.
Crystal-containing cells (C-cells) are widely spread in plant tissues; however, the origin of the crystals and their functions remain a subject of discussion. In sugar beet leaves, the membrane vesicles seen in an electron microscope appear in the cytoplasm and penetrate the vacuole by pinocytosis with the participation of tonoplast. In a light microscope, the vesicles fluoresce like crystals in C-cells. These crystal vesicles also fill the C-cells. The content of crystal vesicles is electron-transparent at all stages of leaf development. It is suggested that both individual crystal vesicles in the cytoplasm and in vacuoles and their agglomerations in C cells, vascular bundles, and epidermal cells are lytic compartments. Later, true crystals seem to be formed.  相似文献   

6.
The crystal proteins from Bacillus thuringiensis are widely used for their specific toxicity against insects and nematodes. The highly conserved sequence blocks play an important role in Cry protein stability and flexibility, the basis of toxicity. The block 3 in Cry5Ba subfamily has a shorter sequence (only 12 residues) and more asparagine residues than that of others which harbor about 48 residues but only one asparagine. Based on the theoretical structure model of Cry5Ba, all three asparagines in block 3 are closely located in the interface of putative three domains, implying their probable importance in structure and function. In this study, all three asparagines in Cry5Ba2 block 3 were individually substituted with alanine by site-directed mutagenesis. The wild-type and mutant proteins were overexpressed and crystallized in acrystalliferous B. thuringiensis strain BMB171. However, the crystals formed in one of the mutants, designated N586A, abnormally disappeared and dissolved into the culture supernatant once the sporulation cells lysed, whereas the Cry5Ba crystal and the other mutant crystals were stable. The mutant N586A crystal, isolated from sporulation cells by the ultrasonic process, was found to be easily dissolved at wide range of pH value (5.0 to 10.0). Moreover, the toxicity assays showed that the mutant N586A exhibited nearly 9-fold-higher activity against nematodes and damaged the host''s intestine more efficiently than the native Cry5Ba2. These data support the presumption that the amide residue Asn586 at the interface of domains might adversely affect the protein flexibility, solubility and resultant toxicity of Cry5Ba.  相似文献   

7.
Zona S 《Annals of botany》2004,93(4):415-421
BACKGROUND AND AIMS: Raphides are ubiquitous in the palms (Arecaceae), where they are found in roots, stems, leaves, flowers and fruits. Their occasional presence in embryos, first noticed over 100 years ago, has gone largely unexamined. METHODS: Embryos from 148 taxa of palms, the largest survey of palm embryos to date, were examined using light microscopy of squashed preparations under non-polarized and crossed polarized light. RESULTS: Raphides were found in embryos of species from the three subfamilies Coryphoideae, Ceroxyloideae and Arecoideae. Raphides were not observed in the embryos of species of Calamoideae or Phytelephantoideae. The remaining subfamily, the monospecific Nypoideae, was not available for study. CONCLUSIONS: Within the Coryphoideae and Ceroxyloideae, embryos with raphides were rare, but within the Arecoideae, they were a common feature of the tribes Areceae and Caryoteae.  相似文献   

8.
Magnetospirillum gryphiswaldense and related magnetotactic bacteria form magnetosomes, which are membrane-enclosed organelles containing crystals of magnetite (Fe3O4) that cause the cells to orient in magnetic fields. The characteristic sizes, morphologies, and patterns of alignment of magnetite crystals are controlled by vesicles formed of the magnetosome membrane (MM), which contains a number of specific proteins whose precise roles in magnetosome formation have remained largely elusive. Here, we report on a functional analysis of the small hydrophobic MamGFDC proteins, which altogether account for nearly 35% of all proteins associated with the MM. Although their high levels of abundance and conservation among magnetotactic bacteria had suggested a major role in magnetosome formation, we found that the MamGFDC proteins are not essential for biomineralization, as the deletion of neither mamC, encoding the most abundant magnetosome protein, nor the entire mamGFDC operon abolished the formation of magnetite crystals. However, cells lacking mamGFDC produced crystals that were only 75% of the wild-type size and were less regular than wild-type crystals with respect to morphology and chain-like organization. The inhibition of crystal formation could not be eliminated by increased iron concentrations. The growth of mutant crystals apparently was not spatially constrained by the sizes of MM vesicles, as cells lacking mamGFDC formed vesicles with sizes and shapes nearly identical to those formed by wild-type cells. However, the formation of wild-type-size magnetite crystals could be gradually restored by in-trans complementation with one, two, and three genes of the mamGFDC operon, regardless of the combination, whereas the expression of all four genes resulted in crystals exceeding the wild-type size. Our data suggest that the MamGFDC proteins have partially redundant functions and, in a cumulative manner, control the growth of magnetite crystals by an as-yet-unknown mechanism.  相似文献   

9.
Monocotyledons are distinguishable from dicotyledons by their subtype P2 sieve-element plastids containing cuneate protein crystals, a synapomorphic character uniformly present from basal groups through Lilioids to Commelinoids. The dicotyledon generaAsarum andSaruma (Aristolochiaceae-Asaroideae) are the only other taxa with cuneate crystals, but their sieveelement plastids include an additional large polygonal crystal, as is typical of many eumagnoliids. New investigations in Melanthiaceae s.l. revealed the same pattern (polygonal plus cuneate crystals) in the sieve-element plastids ofJaponolirion osense (Japonoliriaceae/Petrosaviaceae), ofHarperocallis flava, Pleea tenuifolia, andTofleldia (all: Tofieldiaceae). InNarthecium ossifragum a large crystal, present in addition to cuneate ones, usually breaks up into several small crystals, whereas inAletris glabra andLophiola americana (Nartheciaceae) and in all of the 15 species studied and belonging to Melanthiaceae s.str. only cuneate crystals are found. Highresolution TEM pictures reveal a crystal substructure that is densely packed in both cuneate and polygonal forms, but in Tofieldiaceae the polygonal crystals stain less densely, probably as a result of the slightly wider spacing of their subunits. The small crystals ofNarthecium are “loose”; that is, much more widely spaced. Such “loose” crystals are commonly found in sieve-element plastids of Velloziaceae, present there in addition to angular crystals, and together with cuneate crystals in a few Lilioids and many taxa of Poales (Commelinoids). Ontogenetic studies of the sieve elements ofSaruma, Aristolochia, and several monocotyledons have shown that in their plastids cuneate crystals develop very early and independent from a polygonal one present in some taxa. Therefore, a conceivable particulation of polygonal into cuneate crystals is excluded. Consequently, mutations of some monocotyledons that contain a lone, large, polygonal crystal in their sieve-element plastids are explained as the result of a complex genetic block. The total result of all studies in sieve-element plastids suggests thatJaponolirion and Tofieldiaceae are the most basal monocotyledons and that Aristolochiaceae are their dicotyledon sister group.  相似文献   

10.
To establish the time-sequence relationship between ferritin accumulation and uroporphyrin crystal formation in livers of C57BL/10 mice, a biochemical, morphological and morphometrical study was performed. Uroporphyria was induced by the intraperitoneal administration of hexachlorobenzene plus iron dextran and of iron dextran alone. Uroporphyrin crystal formation started in hepatocytes of mice treated with hexachlorobenzene plus iron dextran at 2 weeks and in mice treated with iron dextran alone at 9 weeks. In the course of time, uroporphyrin crystals gradually increased in size. Uroporphyrin crystals were initially formed in hepatocytes in the periportal areas of the liver, in which also ferric iron staining was first detected. The amount and the distribution of the main storage form of iron in hepatocytes, ferritin, did not differ between the two treatment groups. Ferritin accumulation preceded the formation of uroporphyrin crystals in hepatocytes in both treatment groups. Moreover, uroporphyrin crystals were nearly always found close to ferritin iron. We conclude that uroporphyrin crystals are only formed in hepatocytes in which also iron (ferritin) accumulates. Hexachlorobenzene accelerates the effects of iron in porphyrin metabolism, but does not influence the accumulation of iron into the liver.  相似文献   

11.
Renal calculus is a global common urological disease that is closely related to crystal adhesion and renal tubular epithelial cell impairment. Gap junctions (GJs) and their components (connexins and Cxs) are involved in various pathophysiology processes, but their roles in renal calculi progression are not well defined. Our previous RNA microarray analysis suggests that GJs are one of the key predicted pathways involved in the renal calcium oxalate (CaOx) crystal rat model. In the current study, we found that the Cx43 and Cx32 expression and the GJ function decreased significantly after stimulation with CaOx or sodium oxalate (NaOx) in NRK-52E, MDCK, and HK-2 cells, and Cx43 expression also decreased in renal tissues in renal CaOx crystal model rats. Inhibition of Cx43 in NRK-52E cells by small interference RNA significantly increased the CD44 and androgen receptor expression, and the adhesion between CaOx crystals and cells, which were consistent with the function of GJ inhibitors. On the other hand, after GJ function and Cx43 expression were increased by allicin, diallyl disulfide, or diallyl trisulfide, the impairment of NRK-52E cells by NaOx or other GJ inhibitors and the adhesion between CaOx crystals and renal cells decreased significantly. Furthermore, allicin also increased Cx43 expression and inhibited crystal deposition in rat kidneys. Taken together, our results provide a basis that GJs and Cx43 may participate in renal CaOx stone progression and that allicin, together with its analogues, could be potential drugs for renal calculus precaution.  相似文献   

12.
Crystal-containing organelles in cells of virus infected plants lying at chloroplasts and mitochondria are identical with single membrane-bound microbodies containing crystals of catalase described in healthy plants. Massive complex inclusions caused by turnip mosaic virus very frequently contain the same microbodies with crystal inclusions; that phenomenon may be related to some pathophysiological changes of virus infected plants. Comparable proteinaceous crystals, but not lying within microbodies limited by a membrane, may also be found in cytoplasm of infected cells. These crystals are sometimes surrounded by a substance resembling the microbody matrix. Disintegrated cytoplasm of virus infected cells may also contain the same crystals lying free in “empty spaces”. Cytopathological effects responsible for this phenomenon and possible artifacts as well are discussed.  相似文献   

13.
Within the human testis, Reinke’s crystals are found in Leydig cells but their nature and function are poorly understood. The aim of our study was to investigate the properties of Reinke’s crystals in man with the normal morphology of the testis (control group) and infertile patients diagnosed with cryptorchidism. 20 biopsies from infertile patients and six biopsies from men with regular spermatogenesis (20–30 years.) were used. Sections of the testis tissue were stained with haematoxylin and eosin and a modified Masson’s method. Specimens were observed by bright field, confocal and transmission electron microscopy (TEM). The number of Reinke’s crystals in investigated groups was determined applying stereological methods. In both groups, Reinke’s crystals were noted within the cytoplasm and nuclei of Leydig cells. Some “free” crystals were found within the interstitial space, outside Leydig cells. Confocal microscopy proved to be very useful in the assessment of the shape and 3D reconstruction of the crystal. TEM analysis confirmed a hexagonal form of the crystal, while crystallographic data on sections of 70–300 nm thickness provided a better insight into the organization of the crystal lattice. Stereological analysis revealed a significant increase in the number of crystals in cryptorchid testes when compared with controls. Increased number of crystals in cryptorchid specimens leads to the assumption that the prolonged exposure to higher (abdominal) temperature might stimulate enzymes involved in the synthesis of the proteins of the crystal. However, the exact molecular nature of the crystal lattice remains in both normal and cryptorchid testis obscure.  相似文献   

14.
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489-492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors.  相似文献   

15.
Crystals in 16 species of poisonous plants growing naturally in Saudi Arabia were studied with light microscopy. Three types of crystals were observed: druses, prismatics, and crystal sand. Raphides and styloids were not observed in any of the species studied. Druses occur more frequently in the leaf midrib and in the cortex and pith of the stem. In contrast, crystal sand and prismatic crystals are rare and occur in the leaf, intercostal lamina, and in the vascular tissues. The preliminary results show the absence of the three types of calcium oxalate crystals in the stem and leaf of seven species: Ammi majus L., Anagallis arvensis L., Calotropis procera Ait., Citrullus colocynthis (L.) Schard, Euphorbia peplis L., Hyoscyamus muticus L., and Solarium nigrum L., and the presence of druses, prismatic crystals, and crystal sand either in the leaf and stem or in the leaves or stems of nine species: Anabasis articulata (Forssk.) Moq. in DC., Chenopodium album L., Convolvulus arvensis L., Datura stramonium L., Nerium oleander L., Ricinus communis L., Rumex nervosus Vahl., Pergularia tomentosa L., and Withania somnifera (L.) Dun. in DC. These observations indicate that there is no apparent relationship between the distribution of calcium oxalate crystals and the toxic organs of the plants, and supports the view that the presence of calcium oxalate crystals may not be related to plant toxicity.  相似文献   

16.
V. R. Franceschi 《Protoplasma》1984,120(3):216-223
Summary Sugar beet (Beta vulgaris L.) leaf has a layer of cells extended laterally between the palisade parenchyma and spongy mesophyll that develop numerous small crystals (crystal sand) within their vacuoles. Solubility studies and histochemical staining indicate the crystals are calcium oxalate. The crystals are deposited within the vacuoles early during leaf development, and at maturity the cells are roughly spherical in shape and 2 to 3 times larger than other mesophyll cells. Crystal deposition is preceeded by formation of membrane vesicles within the vacuole. The membranes are synthesizedde novo in the vacuole and have a typical trilaminate structure as viewed with the TEM. The membranes are formed within paracrystalline aggregates of tubular particles (6–8nm outer diameter) as membrane sheets, but are later organized into chambers or vesicles. Calcium oxalate is then precipitated within the membrane chambers. The tubular particles involved in membrane synthesis are usually present in the vacuoles of mature crystal cells, but in very small amounts.  相似文献   

17.
红豆草中含晶细胞的形态学研究   总被引:5,自引:0,他引:5  
红豆草(Onobrychicviciaefoliascop.)植株的所有器官中都分布有含晶细胞,其结晶的类型主要为棱晶,此外还有砂晶。在营养器官中,含棱晶的细胞主要分布在维管组织之中或外围。横切面上,棱晶则几至几十块纵列成行存在,且常伴生于韧皮纤维旁,但每块棱晶各有一分室隔开;在茎的表皮下偶有与大型粘液细胞伴生的砂晶。花萼的表皮中偶有棱晶,花瓣表皮及雄蕊药隔中有砂晶;子房壁内表皮下一层细胞逐渐发育成含棱晶的连续细胞,同时子房维管组织中也形成大量棱晶。分析表明,结晶成分为草酸钙。  相似文献   

18.
Rolf Borchert 《Planta》1990,182(3):339-347
Changes in the spacing patterns of Ca-oxalate crystals during enlargement ofCarya ovata Mill. leaves were quantified by computerized image-analysis. Single Ca-oxalate crystals form in the vacuoles of young mesophyll cells transformed into crystal cells Crystals are very small in newly induced crystal cells and increase in size throughout leaf development. Crystal patterns thus reflect both induction and relative age of crystal cells. Shortly after the emergence of young leaves from the bud, very small crystals are formed in the mesophyll at high density. As leaves expand, these crystals grow larger and become separated by increasing distances. New small crystals appear in the gaps between the older, larger crystals. Later crystal patterns consist of widely spaced, larger crystals only. Finally, clusters of small crystals are formed again in the gaps between large crystals. No crystals were observed in young leaves expanding in a moist chamber, but large numbers of crystal cells were induced experimentally in sections of immature leaves floating on 4 mM Ca-acetate. The observations support the following mechanism of crystal-pattern formation: Ca2+ carried into leaves with the transpiration stream acts as the developmental signal inducing transdifferentiation of a few mesophyll cells into crystal cells when apoplastic [Ca2+] rises. Crystal cells precipitate absorbed Ca2+ as oxalate and, acting as Ca2+ sinks, inhibit crystal-cell induction in their vicinity by depleting apoplastic Ca2+. This prevents close spacing of crystal cells. New crystal cells form in the gaps between the depletion zones of older crystal cells when these move apart during leaf expansion. Later changes in crystal patterns result from increasing sink strength of crystal cells, lowered inducibility of mesophyll cells, and increased Ca2+ influx into leaves during intensive transpiration. Throughout leaf development, spacing of crystal cells permits rapid secretion of apoplastic Ca2+ as Ca-oxalate. Dedicated to Professor Erwin Bünning, University of Tübingen, Germany, who pioneered the analysis of spacing patterns  相似文献   

19.
Rolf Borchert 《Planta》1985,165(3):301-310
For experimental induction of crystal cells (=crystal idioblasts) containing calcium-oxalate crystals, the lower epidermis was peeled from seedling leaflets of Gleditsia triacanthos L., exposing the crystal-free mesophyll and minor veins to the experimental solutions on which leaflets were floated for up to 10 d under continous light. On 0.3–2.0 mM Ca-acetate, increasing numbers of crystals, appearing 96 h after peeling, were induced. The pattern of crystal distribution changed with Ca2+-concentration ([Ca2+]): at low [Ca2+], crystals formed only in the non-green bundlesheath cells surrounding the veins, believed to have a relatively low Ca2+-extrusion capacity; at higher [Ca2+], crystals developed in up to 90% of the mesophyll cells, and at supraoptimal [Ca2+], large extracellular crystals formed on the tissue surface. By sequential treatments with solutions of different [Ca2+], the following three phases were identified in the induction of crystal cells: (1) during the initial 24-h period (adaptive aging), Ca2+ is not required and crystal induction is not possible; (2) during the following 48 h (induction period), exposure to 1–2 mM Ca-acetate induces the differentiation of mesophyll cells into crystal cells; (3) crystal growth begins 72 h after the start of induction. In intact leaflets of Albizia julibrissin Durazz., calcium-oxalate crystals are found exclusively in the bundle-sheath cells of the veins, but crystals were induced in the mesophyll of peeled leaflets floating on 1 mM Ca-acetate. Exposure to inductive [Ca2+] will thus trigger the differentiation of mature leaf cells into crystal cells; the spatial distribution of crystals is determined by the external [Ca2+] and by the structural and functional properties of the cells in the tissue.  相似文献   

20.
The anther connective tissue and hypodermal stomium between adjacent locules in the anthers of Capsicum annuum L. (Solanaceae) are the sites of formation of calcium salt crystals with four different habits. The spatial and temporal associations of these crystals and the idioblastic cells in which they form indicate that crystal sand occurs earliest in anther development near the single vascular strand, followed by spherulites and prismatic crystals farther out in the connective tissue, and finally druses occur in the hypodermal stomium. Both the druses and the crystal sand crystals are encased in crystal chambers and are associated with distinct membranes, whereas the spherulites and prismatic crystals are not bounded by any apparent membranes but they are surrounded by dense material that is rich in calcium and stains positively for polysaccharides and proteins. Quite often spherulites and prismatic crystals are observed within a single cell in contact with each other. X-ray diffraction of crystal preparations containing all four crystal habits and X-ray elemental analyses of single crystals, as well as visual observations and acid treatments, suggest that all four crystal habits consist of calcium oxalate. The hypodermal stomium and adjacent connective tissue degenerate at the pollen stage causing adjacent locules to fuse. Shortly afterward, each stomium epidermis splits open along the length of the anther releasing the pollen. It is suggested that the crystal idioblasts are involved in this process, possibly by a temporally orchestrated sequestration of calcium from both the cell cytoplasm and cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号