首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The very varied relationships that have been proposed are reviewed. Floral morphology and floral vasculature are described and the interpretations of some floral structures, particularly staminodes, disk and gynoecium are discussed. It is concluded that the petaloid scales are equivalent to petals rather than staminodes, that the nectaries do not represent a disk and that the gynoecium is monocarpellary. Evidence from several other characters confirms that none of the relationships which have been suggested are valid. Corynocarpus thus appears to be a truly isolated genus.  相似文献   

2.
Chen JH  Pang JL  Wang LL  Luo YH  Li X  Cao XL  Lin K  Ma W  Hu XH  Luo D 《Cell research》2006,16(5):499-506
Although much progress has been made in understanding how floral organ identity is determined during the floral development, less is known about how floral organ is elaborated in the late floral developmental stages. Here we describe a novel floral mutant, wrinkled petals and stamens1 (wps1), which shows defects in the development of petals and stamens. Genetic analysis indicates that wpsl mutant is corresponding to a single recessive locus at the long arm of chromosome 3. The early development of floral organs in wpsl mutant is similar to that in wild type, and the malfunction of the mutant commences in late developmental stages, displaying a defect on the appearance of petals and stamens. In the mature flower, petals and stamen filaments in the mutant are wrinkled or folded, and the cellular morphology under L1 layer of petals and stamen filaments is abnormal. It is found that the expression patterns of floral organ identity genes are not affected in wpsl mutants compared with that of wild type, consistent with the unaltered development of all floral organs. Furthermore, the identities of epidermal cells in different type of petals are maintained. The histological analysis shows that in wpsl flowers all petals are irregularly folded, and there are knotted structures in the petals, while the shape and arrangement of inner cells are malformed and unorganized. Based on these results, we propose that Wpsl acts downstream to the class B floral organ identity genes, and functions to modulate the cellular differentiation during the late flower developmental stages.  相似文献   

3.
Lardizabalaceae, one of seven families of Ranunculales, represent a monophyletic group. The family has functionally unisexual flowers with the organs in trimerous whorls, petaloid sepals and sometimes nectariferous petals. Among Ranunculales, Lardizabalaceae share several floral characters and climbing habit with Menispermaceae, but molecular analyses indicate that Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Morphological and ontogenetic studies of flowers have proved to be a good complement to molecular data in clarifying relationships. Floral organogenesis has been studied in very few species of the family. This study investigates the comparative floral development of three species from three genera (Decaisnea, Akebia and Holboellia) of Lardizabalaceae using scanning electron microscopy. Flowers have a whorled phyllotaxis. Within each whorl, the organs are initiated either simultaneously or in a rapid spiral sequence. In Akebia, six sepals are initiated, but one to three sepals of the second whorl do not further develop. The presence of three sepals in Akebia is thus a developmentally secondary simplification. The petals (if present) are retarded in early developmental stages; stamens and petals are different in shape from the beginning of development. The retarded petals may not be derived from staminodes in Lardizabalaceae. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 171–184.  相似文献   

4.
The genus Clusia L. is highly variable in many floral features. Several Clusia species have floral organs of mixed or uncertain identity, such as organs that are transitional between bracteoles and sepals, petaloid sepals, and partly petaloid stamen rings. Unique in Clusia is the "corona" of Clusia gundlachii Stahl, a thick, urn-shaped structure that is initiated as a ring primordium. In male flowers it surrounds a synandrium, and in female flowers it surrounds the ovary and a row of staminodes. The corona combines features typical of both petals and stamens of other Clusia species. It is hypothesized that this corona may be the result of the altered expression patterns of the genes that determine floral organ identity. Clusia gundlachii has many floral features in common with two small genera that are sometimes included in Clusia: Havetiopsis and Oedematopus. These genera have four thick connivent petals. Their apparent close relationship makes it seem likely that the corona of C. gundlachii evolved via congenital fusion of such petals. The corona is also somewhat similar to the staminodial rings present in many Clusia species, but taxa in which such organs occur show little similarity to C. gundlachii in terms of other floral characters.  相似文献   

5.
Cell distribution and surface morphology in petals, androecia and styles of Commelinaceae. Epidermal cell shape, distribution, surface topography and cuticular morphology in petals, androecia and styles of 10 species in the Commelinaceae are described. Petals of all species possess a basal area of elongated, straight-sided cells and an area of cells with sinuous, anticlinal walls. The degree of convolution of anticlinal wall and the length of cells varies between genera. The surface of cells in Aneilema, Commelina and Cyanotis are micropapillate. In all other genera they are low-domed. Cuticular surfaces of the three genera are smooth, while in the remainder heavily striated. The cells of stamens, staminodes, staminal hairs, and styles are variably elongated and straight-sided, their surfaces convex and cuticle striated. The degree of striation is less pronounced at the base of each organ but becomes more densely arrayed towards the apex. Petal pigments are located in upper epidermal cells in Tradescantia and Thyrsanthemum , in upper and lower epidermises in Dichorisandra and Commelina , and in both epidermises, and mesophyll of Aneilema. In most species pigmentation of androecium and style is similar to petals though often fainter at base and apex. Flavonols in the pigments give rise to spectral polmorphisms visible in longwave UV light. Epidermal adaptations for light capture in petals is compared to that in leaf structure.  相似文献   

6.
A study of the floral ontogeny of Popowia was carried out to investigate the phyllotactic arrangement of the floral organs and occurring trends in the androecium of Annonaceae. The flower buds arise on a common stalk in the axil of a bract. Three sepals emerge in quick succession and are rapidly overrun in size by two whorls of petals. The androecium is initiated centripetally in successive whorls. A first whorl of three pairs of outer staminodes emerges opposite the outer petals and is followed by nine staminodes. Next a whorl of nine fertile stamens arises in alternation with the second whorl of staminodes. The carpels arise in three alternating whorls of nine. The nature of the perianth parts is morphologically identical. The process of cyclisation of the androecium from a spiral is discussed for Annonaceae and Magnoliidae in general. The inception of the three outer stamen pairs is a widespread reductive step for multistaminate androecia in the process of oligomerization. It is proposed to define the cyclic inception of numerous stamens as whorled polyandry, being an intermediate step between true polyandry and a reduced stamen number in whorls. The absence of a cup-like shape in the carpel development is related to the flattened receptacle.  相似文献   

7.
Flower developmental studies are a complement to molecular phylogenetics and a tool to understand the evolution of the angiosperm flower. Buds and mature flowers of Meliosma veitchiorum, M. cuneifolia, and M. dilleniifolia (Sabiaceae) were investigated using scanning electron microscopy to clarify flower developmental patterns and morphology, to understand the origin of the perianth merism, and to discuss the two taxonomic positions proposed for Sabiaceae, among rosids or in the basal grade of eudicots. Flowers in Meliosma appear pentamerous with two of the five sepals and petals strongly reduced, three staminodes alternating with two fertile stamens opposite the small petals, and a two-carpellate gynoecium. The flower development in Meliosma is spiral without distinction between bracteoles and sepals. Because of this development, sepals, petals, and stamens are almost opposite and not alternating as expected in cyclical pentamerous flowers. In four-sepal flowers the direction of petal initiation is reversed. The symmetry of the flower appears to be transversally zygomorphic, although this is hidden by the almost equal size of the larger petals. Evidence points to a unique pentamerous origin of flowers in Meliosma, and not to a trimerous origin, as earlier suggested, and adds support to multiple origins of pentamery in the eudicots.  相似文献   

8.
In both male and female flowers of H. morsus-ranae the primordia of the floral appendages appear in an acropetal succession consisting of alternating trimerous whorls. In the male flower a whorl of sepals is followed by a whorl of petals, three whorls of stamens, and a whorl of filamentous staminodes. The mature androecial arrangement therefore consists of two antisepalous stamen whorls, an antipetalous whorl of stamens, and antipetalous staminodes. Shortly before anthesis, basal meristematic upgrowth between filaments of adjacent whorls produces paired stamens, joining Whorls 1 and 3, and Whorl 2 with the staminodial whorl. A central domelike structure develops between the closely appressed filaments of the inner stamen and staminodial whorl, giving the structure a lobed appearance. After petal inception in the female flower a whorl of antisepalous staminodes develop, each of which may bifurcate to form a pair of staminodes. During staminode development a girdling primordium arises by upgrowth at the periphery of the floral apex. The girdling primordium rapidly forms six gynoecial primordia, which then go on to produce six free styles with bifid stigmas. Intercalary meristem activity, below the point of floral appendage attachment, leads to the production of a syncarpous inferior ovary with six parietal placentae. The styles and carpels remain open along their ventral sutures. During the final stages of female floral development, several hundred ovules develop along the carpel walls, and three nectaries develop dorsally and basally on the three antipetalous styles.  相似文献   

9.
BACKGROUND AND AIMS: Eriocaulaceae (Poales) is currently divided in two subfamilies: Eriocauloideae, which comprises two genera and Paepalanthoideae, with nine genera. The floral anatomy of Actinocephalus polyanthus, Leiothrix fluitans, Paepalanthus chlorocephalus, P. flaccidus and Rondonanthus roraimae was studied here. The flowers of these species of Paepalanthoideae are unisexual, and form capitulum-type inflorescences. Staminate and pistillate flowers are randomly distributed in the capitulum and develop centripetally. This work aims to establish a floral nomenclature for the Eriocaulaceae to provide more information about the taxonomy and phylogeny of the family. METHODS: Light microscopy, scanning electron microscopy and chemical tests were used to investigate the floral structures. KEY RESULTS: Staminate and pistillate flowers are trimerous (except in P. flaccidus, which presents dimerous flowers), and the perianth of all species is differentiated into sepals and petals. Staminate flowers present an androecium with scale-like staminodes (not in R. roraimae) and fertile stamens, and nectariferous pistillodes. Pistillate flowers present scale-like staminodes (except for R. roraimae, which presents elongated and vascularized staminodes), and a gynoecium with a hollow style, ramified in stigmatic and nectariferous portions. CONCLUSIONS: The scale-like staminodes present in the species of Paepalanthoideae indicate a probable reduction of the outer whorl of stamens present in species of Eriocauloideae. Among the Paepalanthoideae genera, Rondonanthus, which is probably basal, shows vascularized staminodes in their pistillate flowers. The occurrence of nectariferous pistillodes in staminate flowers and that of nectariferous portions of the style in pistillate flowers of Paepalanthoideae are emphasized as nectariferous structures in Eriocaulaceae.  相似文献   

10.
Comparative developmental morphology was used to assess structural homology of flowers in Dalea, Marina, and Psorothamnus of the tribe Amorpheae (Fabaceae: Papilionoideae). Dalea, Marina, and some species of Psorothamnus have an unusual petal-stamen synorganization (stemonozone) in which free petals are inserted on a region that is continuous with fused stamen filaments. Developmental studies of these three genera demonstrated similarity during organogenesis. Zonal growth results in several synorganized regions, including the stemonozone of Dalea, Marina, and some Psorothamnus. Psorothamnus species that lack a stemonozone have fused stamens and free petals inserted on the hypanthium, as in most other papilionoid legumes. We concluded that the stemonozone is not strictly homologous to either androecium or receptacle, but that it is the product of a modified androecial developmental program. In the prairie clover daleas, petaloid structures positioned between the stamens have been variously interpreted as petals or as staminodes; we infer that they have an extreme form of the daleoid stemonozone, on which five petals (no staminodes) and five stamens are inserted. Assessing structural homology of these flowers allows us to characterize accurately daleoid morphology for evolutionary studies in the tribe Amorpheae.  相似文献   

11.
《Comptes rendus biologies》2019,342(5-6):220-229
The in vitro cultivation of date palm staminodes (vestigial stamens) at different stages of female floral ontogenesis confirms the persistence at an immature state of such organs at all the floral differentiation stages. This is evidenced even in fully mature female flowers. Our study revealed the advanced developmental patterns of these rudimentary structures, which bear diverse morphogenetic potentialities. In vitro cultivation of staminodes provides new opportunities for in vitro regeneration of date palm. Such developmental processes were found to be modulated by the stage of floral differentiation, which closely reflected the level of staminode maturity. Development was also impacted by the composition and concentration in plant growth regulators (NAA, BAP and 2,4-D) of the culture media. The large morphogenetic plasticity of the staminodes disposed them to evolutionary variations of the date palm reproduction system. The practical benefits (micropropagation) and the fundamental interests (evolutionary process) of our investigation are discussed.  相似文献   

12.
The floral development of 11 species of Orchidoideae (sensu Rasmussen 1985) was studied by means of SEM, paying special attention to the early development of the gynostemium and its appendages. In contrast to the staminodes found in epidendroid and vandoid orchids, the 'auricles' of the tribe Orchideae are developed on the dorsal side of the fertile anther and therefore are not interpreted as staminodes. Presumed vestiges of the staminodes corresponding to those of the Epidendroideae and Vandoideae are differentiated in early developmental stages, but remain inconspicuous structures later on. The three-lobed rostellum originates entirely from the median carpel. The outstanding systematic position of the tribe Orchideae is briefly discussed.  相似文献   

13.
All the floral primordia are homologous to leaves in their development inLindenbergia macrostachya. The sepals follow an anterior to posterior sequence of initiation. The petals and stamens are initiated almost simultaneously but sequentially in order of petals followed by stamens. There is no sign of development of fifth posterior stamen. p ]The calyx tube is formed by interprimordial growth followed by zonal growth. The combined interprimordial growth between the petal primordia and growth on the abaxial side of stamen primordia results in the formation of upper corolla tube whereas lower corolla tube is formed only by zonal growth. The zonal growth extends below the bases of stamen primordia also due to which they become epipetalous. The placentae arise from the carpellary margins, move inwards and get fused in the lower half and remain free in the upper part of the ovary. Thus the ovary appears biloeular with axile plaeentation in the lower haler and unilocular with parietal placentation in the upper half.  相似文献   

14.
Pedicularis shows high diversity in its corolla form, however, its floral ontogeny has been rarely investigated. In particular, the development of the highly variable upper lip (galea), three broad morphological types of which (beakless and toothless, beakless and toothed, beaked) can be discriminated, remains unknown. We used scanning electron microscopy to investigate the early stages of floral ontogeny in two beaked species, Pedicularis gruina and P. siphonantha. To compare the developmental processes of the three galea types, three species for each type were investigated. Initiations of floral organs in Pedicularis are consistent. Sepal initiations are successive from the lateral-adaxial primordia, followed by the lateral-abaxial ones (these sometimes missing), then the mid-adaxial one (again sometimes missing). The stamens are initiated prior to the petals, or development of petal primordia may be retarded at the early stages in comparison with that of stamen primordia. Four stamen primordia are initiated simultaneously. The five petal primordia are initiated almost simultaneously. Development processes of the upper lip among the three galea types differ in the expansion rates and directions of the cells of the two lobes and these differences govern whether or not a beak and/or teeth are formed on the upper lip. The floral ontogeny of Pedicularis is close to that of Agalinis, which supports the molecular assignment. Floral monosymmetry of Pedicularis is established at the beginning of sepal initiation and is maintained until flowering. The development of the upper lip provides some clues to the evolution of beaked and/or toothed galeas in Pedicularis.  相似文献   

15.
The Caryophyllales have the highest diversity in androecial patterns among flowering plants with stamen numbers ranging from 1 up to 4,000. Thanks to the recent progress in reconstructing the phylogeny of core Caryophyllales, questions of floral evolution, such as the origin and diversification of the androecium, can be readdressed. Caryophyllales are unique among core eudicots in sharing an androecial ring meristem or platform with centrifugal development of stamens and petals. Stamens are basically arranged in two whorls and evolution within the clade depends on the shift of either the antesepalous or the alternisepalous whorls to an upper position on the ring meristem and the reduction of the other. Four main developmental phenomena are responsible for the high diversity in androecial patterns: (1) the sterilisation of the outermost stamens through a division of common primordia; (2) the secondary addition of stamens by a centrifugal initiation of supernumerary stamens superimposed on a lower stamen number; (3) the pairwise displacement of alternisepalous stamens to the middle of the outer sepals and their potential fusion, or as part of a pluristaminate androecium; (4) the inversed sequence, reduction and loss of antesepalous stamens. Shifts in stamen numbers depend on pressures of the calyx and carpels and changes in the number of the latter. These patterns are expressed differently in the three main evolutionary lines of core Caryophyllales and are systematically relevant: (1) A basal grade of Caryophyllales, culminating with Caryophyllaceae, Amaranthaceae, Stegnosperma and Limeum, has the antesepalous stamens initiated in upper position on the ring meristem, and alternisepalous stamens are preferentially reduced. Among the antesepalous whorl there is a progressive loss of stamens following a sequence inversed to sepal initiation. Petaloid staminodes are formed by the radial division of outer stamens. (2) The raphide-clade and Molluginaceae are characterized by alternisepalous stamens in upper position on the ring meristem, with a trend to secondary stamen multiplication, and loss of antesepalous stamens. (3) The Portulacineae share the pattern of the raphide clade, but some taxa show shifts to an upper position on the ring meristem of either antesepalous or alternisepalous stamens, linked with secondary multiplications and reduction of either whorl. Different floral characters are plotted on a recent cladogram of Caryophyllales. The data show a consistent correlation between shifting carpel and stamen numbers independent of perianth evolution. Comparative data suggest that the basic androecium of Caryophyllales consists of two whorls of five stamens, linked with an absence of petals, and the evolution of the androecium is a combination of reductions and secondary multiplications of stamens with a highly predictive systematic value.  相似文献   

16.
Monocots are remarkably homogeneous in sharing a common trimerous pentacyclic floral Bauplan. A major factor affecting monocot evolution is the unique origin of the clade from basal angiosperms. The origin of the floral Bauplan of monocots remains controversial, as no immediate sister groups with similar structure can be identified among basal angiosperms, and there are several possibilities for an ancestral floral structure, including more complex flowers with higher stamen and carpel numbers, or strongly reduced flowers. Additionally, a stable Bauplan is only established beyond the divergence of Alismatales. Here, we observed the floral development of five members of the three ‘petaloid’ Alismatales families Butomaceae, Hydrocharitaceae, and Alismataceae. Outer stamen pairs can be recognized in mature flowers of Alismataceae and Butomaceae. Paired stamens always arise independently, and are either shifted opposite the sepals or close to the petals. The position of stamen pairs is related to the early development of the petals. In Butomaceae, the perianth is not differentiated and the development of the inner tepals is not delayed; the larger inner tepals (petals) only permit the initiation of stamens in antesepalous pairs. Alismataceae has delayed petals and the stamens are shifted close to the petals, leading to an association of stamen pairs with petals in so-called stamen–petal complexes. In the studied Hydrocharitaceae species, which have the monocot floral Bauplan, paired stamens are replaced by larger single stamens and the petals are not delayed. These results indicate that the origin of the floral Bauplan, at least in petaloid Alismatales, is closely linked to the position of stamen pairs and the rate of petal development. Although the petaloid Alismatales are not immediately at the base of monocot divergence, the floral evolution inferred from the results should be a key to elucidate the origin of the floral Bauplan of monocots.  相似文献   

17.
Stamens that have lost their primary function of pollen production, or staminodes, occur uncommonly within angiosperms, but frequently fulfill important secondary floral functions. The phylogenetic distribution of staminodes suggests that they typically arise during evolutionary reduction of the androecium. Differences in the genetic control and patterns of stamen loss between actinomorphic and zygomorphic flowers shape staminode development. In clades with actinomorphic flowers, staminodes generally replace an entire stamen whorl and staminode loss seems irreversible. In contrast, in clades with zygomorphic flowers staminodes evolve from a subset of the stamens in a whorl and staminodes can reappear in a lineage after being lost (e.g., Cheloneae, Scrophulariaceae). If staminodes do not adopt new functions during androecium reduction they are lost quickly, so that nonfunctional staminodes appear only in recently derived taxa. Alternatively, when staminodes assume new floral roles, either directly or indirectly after a nonfunctional period, they can become integral floral components which perpetuate within clades (e.g., Orchidaceae). Indirect evolution of staminode function allows greater flexibility of function by allowing staminodes to take over roles not performed by stamens, such as involvement in mechanisms to prevent self-pollination and mechanisms of explosive pollination. Multifunctional staminodes characterize lineages with universal or widespread staminodes.  相似文献   

18.
Anton G.M. Gerats   《Plant science》1991,80(1-2):19-25
The Petunia system is described together with its possible use for molecular research on floral development. Developmental mutants are described in some detail. The most interesting mutants are Blind and Green petals. In both the appearance of only the petals has changed, in Blind towards antheroid tissue, in Green petals towards sepals. Transposon tagging as an approach to isolate developmental genes in Petunia is also discussed.  相似文献   

19.
Sanguinaria canadensis is a member of the Papaveraceae that normally has eight petals rather than four as is usual in the family. Using epi-illumination microscopy to study floral development, we show that the four additional petal primordia are initiated in positions that correspond to the first four stamen positions in species of the Papaveraceae with four petals. Also, these additional petal primordia share early developmental features with stamen primordia: at inception they are circular in outline, and the relationship between organ length and width while very young is similar. The developmental pathway of the additional petals combines both stamen and petal features: initially stamenlike in appearance, they develop into typical petals. The additional petals of S. canadensis can therefore be interpreted as homeotic because petal features are expressed in stamen positions. Organogenesis in the ‘Multiplex’ cultivar is similar to that of its wild progenitor, but during development all primordia in the androecial region become petals. This cultivar, as well as variants within natural populations, show that replacement of stamens with petals occurs within the species.  相似文献   

20.
This study deals specifically with floral organogenesis and the development of the inflorescence of Philodendron squamiferum and P. pedatum. Pistillate flowers are initiated on the lower portion of the inflorescence and staminate flowers are initiated on the distal portion. An intermediate zone consisting of sterile male flowers and atypical bisexual flowers with fused or free carpels and staminodes is also present. This zone is located between the sterile male and female floral zones. In general, the portion of bisexual flowers facing the male zone forms staminodes, and the portion facing the female zone develops an incomplete gynoecium with few carpels. The incomplete separation of some staminodes from the gynoecial portion of the whorl shows that they belong to the same whorl as the carpels. There are two levels of aberrant floral structures in Philodendron: The first one is represented by the presence of atypical bisexual flowers, which are intermediates between typical female flowers and typical sterile male flowers. The second one is the presence of intermediate structures between typical carpels and typical staminodes on a single atypical bisexual flower. The atypical bisexual flowers of P. squamiferum and P. pedatum are believed to be a case of homeosis where carpels have been replaced by sterile stamens on the same whorl. A quantitative analysis indicates that in both species, on average, one staminode replaces one carpel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号